期刊文献+

基于最小二乘法的瓶盖检测算法设计应用 被引量:4

DESIGN OF BOTTLE CAP DETECTION ALGORITHM BASED ON LEAST SQUARE METHOD AND ITS APPLICATION
在线阅读 下载PDF
导出
摘要 随着科技的进步,现代化工业生产水平不断提高。而目前生产线中,瓶盖的检测仍靠人力,为实现瓶盖自动化实时检测与筛选,改善采集高速运动瓶盖图像所出现的虚影问题,设计适合高速瓶盖检测的算法。其主要工作包含:分析采集图像中目标边缘数据,创新性地将最小二乘法算法引入到图像处理领域,对目标图像线性化处理,降低虚影程度,从而降低系统对硬件的依赖程度;改进平均阈值分割算法,并结合小面积去除法去除背景杂质点,提取出清晰的目标轮廓;通过仿真技术验证系统算法,得出算法具有简单、快速等特征的结论。通过系统实验,证实该检测系统具有高准确性和高实时性。 With the progress of science and technology, the level of modern industrial production has been continuously raised. At present in the production line, the bottle cap' s detection still relies on manpower. To realize automatic real-time detection and screening of bottle caps, and improve the virtual shadow problem of high-speed movement bottle cap images, we design an algorithm suitable for high-speed bottle cap detection. Its main work includes:Analysis of data acquisition object edge image, and introduce the least square method to the field of image processing, the target image is linearized to reduce the virtual shadow degree and reduce the dependence of the system on the hardware; Improved average threshold segmentation algorithm, and combined with a small area removal method to remove the background impurities, to extract a clear target contour; The algorithm is proved by the simulation technology, and it has a simple, fast and other characteristics. Experiments show that the detection system has high accuracy and high real-time performance.
出处 《计算机应用与软件》 2017年第11期223-227,246,共6页 Computer Applications and Software
关键词 机器视觉 最小二乘法 阈值分割 面积滤波 Machine vision Least square method Threshold segmentation Area filtering
  • 相关文献

参考文献5

二级参考文献36

  • 1田巍,庄镇泉.基于HSV色彩空间的自适应肤色检测[J].计算机工程与应用,2004,40(14):81-85. 被引量:37
  • 2Huang Yaping, Luo Siwei, Wang Shengchun. CombiningBoundary and Region Information with Bolt Prior for Rail Sur- face Detection [ J ]. IEICE TRANSACTIONS ON INFORMA- TION AND SYSTEMS,2012( 2 ) :690 - 693.
  • 3Kourosh Jafari-Khouzani, Hamid Sohanian-Zadeh, SrMember. Radon Transform Orientation Estimation for Rotation lnvariant Texture Analysis[ J]. IEEE transaction on pattern analysis and machine intelligence, 2005,27 ( 6 ) : 123 - 127.
  • 4Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-time Tracking of Human Body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785.
  • 5Candamo J, Shreve M, Goldgof D B, et al. Understanding Transit Scenes: A Survey on Human Behavior-recognition Algorithms[J]. IEEE Transactions on Intelligent Trans- portation Systems, 2010, 11(1): 206-224.
  • 6Tang Yi, Liu Weining, Xiong Liang. Improving Robustness and Accuracy in Moving Object Detection Using Section- distribution Background Model[C]//Proc. of IEEE Conference on Natural Computation. Jinan, China: [s. n.], 2008.
  • 7Ohta N. A Statistical Approach to Background Suppression for Surveillance Systems[C]//Proc. of IEEE International Conference on Vision. Vancouver, Canada: IEEE Press, 2001.
  • 8Bugeau A, Perez A. Detection and Segmentation of Moving Objects in Highly Dynamic Scenes[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis, USA: IEEE Press, 2007.
  • 9Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: 1EEE Press, 1999.
  • 10Stauffer C, Grimson W E L. Learning Patterns of Activity Using Real-time Tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8: 747-757.

共引文献16

同被引文献39

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部