期刊文献+

基于卷积神经网络的绝缘子故障识别算法研究 被引量:21

Research of a faulted insulator identification algorithm based on convolution neural network
在线阅读 下载PDF
导出
摘要 卷积神经网络被广泛应用在图像处理领域,不同算法对网络识别率有较大的影响。基于此,引入小波分解理论,通过BP传播算法以及空间向量理论证明得到,相互独立的特征更能表达原图像的信息。通过小波分解去除卷积核之间的相关性,用较少的卷积核提取图像更独立、全面的特征,以提高网络的识别性能。在MNIST、CIFAR-10和CK标准数据库上进行分类识别实验,实验结果表明,此算法能在不同核函数尺寸的条件下取得较高识别率,且达到与传统算法相同识别率的前提下,所需的训练迭代次数更少,训练时间更短。最后,将该算法应用到绝缘子故障识别中,并取得了良好的效果。 Convolution neural network has been widely used in image processing field. Meanwhile,different algorithms have different impact on network recognition rate. Based on this,we introduced wavelet decomposition theory and got that independent characteristics can express the original image more clearly,which was proved by BP propagation algorithm and space vector theory. Because wavelet decomposition reduced the correlation between the Kernel and extracted more independent,comprehensive features with less convolution Kernel,thus the network performance was improved. Recognition experiments are conducted on MNIST,CIFAR-10 and CK standard database,the results show that the algorithm proposed in this paper can achieve higher recognition rate under the condition of different Kernel size and can obtain the recognition rate as the traditional algorithm with fewer iteration times and shorter training time.At last,this algorithm was applied in the fault identification of insulators and achieved good results.
作者 高强 孟格格
出处 《电测与仪表》 北大核心 2017年第21期30-36,共7页 Electrical Measurement & Instrumentation
关键词 卷积神经网络 图像分类 核函数相关性 绝缘子 故障识别 convolution neural network, image classification, the correlation between the Kernel, insulator,fault identification
  • 相关文献

参考文献9

二级参考文献95

  • 1杨三序.电容式传感器在车辆检测装置中的应用[J].传感器技术,2004,23(9):74-76. 被引量:3
  • 2任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 3贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 4廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 5Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 6LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 7Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 8Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 9Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.
  • 10Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229.

共引文献381

同被引文献262

引证文献21

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部