期刊文献+

CSR1000控制棒落入堆芯三维瞬态分析

3D Transient Analysis on CSR1000 Core Control Rod Drop
在线阅读 下载PDF
导出
摘要 针对超临界水堆(SCWR)控制棒落入堆芯事件特点,采用堆芯三维瞬态性能分析方法,利用开发的SCWR堆芯三维瞬态物理-热工水力耦合程序STTA,建立SCWR堆芯落棒瞬态三维计算模型和分析流程,研究分析超临界水堆CSR1000在控制棒落入堆芯瞬态过程中的堆芯性能,分析评价落棒瞬态下CSR1000堆芯的安全性能。堆芯三维落棒瞬态分析表明,当落入堆芯棒束价值较高时,落棒初期堆芯功率下降较快,之后由于水密度的反应性反馈,堆芯功率缓慢回升至新的平衡,堆芯功率下降速率超过了停堆信号整定值,将触发保护停堆;当落入堆芯棒束价值较低时,由于水密度的反应性反馈,堆芯功率下降缓慢,堆芯功率下降速率未能达到停堆信号整定值,不能触发保护停堆。控制棒落入堆芯对堆芯轴向功率分布影响很小,高价值落棒导致的落棒区域燃料组件功率坍塌相对低价值落棒更明显。无论是高价值落棒还是低价值落棒,瞬态过程中最大包壳壁面温度均低于瞬态安全限值850℃。水密度的显著反应性反馈及必要的保护停堆措施能保证CSR1000堆芯在控制棒落入堆芯过程中的安全性能。 Transient performance of CSR1000 core during the control rod (CR) dropping into the core was analyzed and evaluated using the 3D SCWR transient analysis method. The 3D CR drop transient analysis shows that while the high worth CR drops into the core, the core power descent rate exceeds the shut-down setting value, then the protec-tion shut-down will be triggered. While the low worth CR drops into the core, the core power descent rate isn?t quick enough to exceed the shut-down setting value, and the protection shut-down won?t be triggered. The maximum cladding surface temperature (MCST) retains lower than safety criteria 850 ℃ in the transient process no matter the dropped CR worth is high or low. The safety of CSR1000 core can be guaranteed during the CR dropping into the core under the significant water density reactivity feedback andthe essential reactor protection shut-down measures.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2017年第12期2253-2257,共5页 Atomic Energy Science and Technology
关键词 超临界水堆 三维瞬态分析 高价值落棒 低价值落棒 最大包壳壁面温度 SCWR 3D transient analysis high worth CR drop low worth CR drop maximum cladding surface temperature
  • 相关文献

参考文献5

二级参考文献25

  • 1The RELAP5 3D Code Development Team. RE LAP5 3D code manual, Volume I : Code struc ture, system models, and solution methods[R]. USA: Idaho National Laboratory, 2005.
  • 2DOWNAR T, LEE D, XU Y, et al. PARCS V2.6 core neutronics simulator theory manual [R]. USA: NRC, 2007.
  • 3ZIABLETSEV D, AVRAMOVA M, IVANOV K. Development of pressurized water reactor in tegrated safety analysis methodology using multi- level coupling algorithm[J]. Nuclear Science and Engineering, 2004, 148: 414-425.
  • 4BOER R, BOHM R, FINNEMANN H, et al. The coupled neutronics and thermal hydraulics code system PANBOX for PWR safety analysis [J]. Kerntechnik, 1992, 57(1): 49 -54.
  • 5赵文博,姚栋,王侃,等.龙格库塔时问离散的中子时空动力学方程求解[C]∥第十三届反应堆数值计算与粒子输运学术会议.西安:[出版者不详],2010.
  • 6STEWART C W, WHEELER C L, CENA R .l, et al. COBRA IV: The model and the method[R]. USA: Pacific Northwest Laboratory, 1977.
  • 7FINNEMANN H, GALATI A. NEACRP 3-D LWR core transient benchmark, final specifica- tions, OECD NEACRP-L-335[R]. [S. 1. ]. [s. n.], 1992.
  • 8KNIGHT M P, BRYCE P. Derivation of a refined PANTHER solution to the NEACRP PWR rod- eiection transient[C] // Proceedings of the Joint International Conference on Mathematical Method Applications and Supercomputing for Nuclear Appli cations. Saratoga Springs[ Is. n. ], 1997.
  • 9FINNEMANN H, BAUER H, GALATI A, et al. Results of I.WR core transient benchmarks, OECDNEA/NSC/DOC(93)25[R]. [S. 1.][ s. n.], 1993.
  • 10Yamaji A,Kamai K,Oka Y. Improved Core Design of the High Temperature Supercritical-Pressure Light Water Reactor[J].Annals of Nuclear Energy,2005.651-670.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部