期刊文献+

l_0-范数约束的稀疏多径信道RLS常模盲均衡算法 被引量:1

l_0-norm Constraint RLS Constant Modulus Algorithm for Sparse Channel Equalization
在线阅读 下载PDF
导出
摘要 针对稀疏多径信道下MPSK信号的快速盲均衡问题,提出了一种l_0-范数约束的递归最小二乘常模盲均衡算法.该算法借鉴传统的递归最小二乘常模盲均衡算法思想,结合稀疏自适应滤波理论,首先利用l_0-范数对均衡器抽头系数进行稀疏性约束,构造出一种l_0-范数约束的加权最小二乘误差代价函数,然后依据递归最小二乘算法推导出均衡器抽头系数更新公式.该算法发挥递归最小二乘常模算法收敛速度快的优势,并对幅度极小系数附加零点吸引调整,从而实现不同幅度抽头系数的快速收敛.理论分析与仿真结果表明,与现有算法相比,该算法在保证较低剩余符号间干扰的前提下,能有效提高均衡器的收敛速度. A novel blind equalization approach called l0-norm constraint recursive least square constant module algorithm is proposed for M PSK signal in sparse multipath channel. Firstly,motivated by the traditional recursive least square constant module algorithm and sparse adaptive filter theory,a newexponential weighting based least mean square error cost function with the l0-norm penalty on the equalizer tap coefficients is constructed. Then,the iterative updating formula of the equalizer is derived according to the recursive least square algorithm. The algorithm takes the advantages of the recursive least square algorithm,as well as attracting the inactive taps to zero,to realize fast convergence of various tap coefficients.Theoretical analysis and simulation results showthat the proposed algorithm outperforms the existing algorithms in increasing the convergence rate at the same residual inter-symbol interference level.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第10期2561-2568,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61401511)
关键词 稀疏多径信道 快速盲均衡 l0-范数约束 RLS常模算法 spase multipath channel fast convergence blind equalization l0-norm penalty recursive least squareconstant module algorithm
  • 相关文献

参考文献7

二级参考文献75

  • 1刘国军,唐降龙,黄剑华,刘家峰.基于模糊小波的图像对比度增强算法[J].电子学报,2005,33(4):643-646. 被引量:19
  • 2张艳萍.水声通信中分数间隔盲均衡理论与算法研究[D].西安:西北工业大学,2005.
  • 3Cooklev T. An efficient architecture for orthogonal wavelet transforms [J]. IEEE Signal Processing Letters, 2006, 13(2): 77-79.
  • 4Shalvi O, Weinstein E. Super-exponential methods for blind deconvolution [J]. IEEE Trans Information Theory, 1993,39(2): 505-519.
  • 5Hyoung-Nam Kim, Sung lk Park, Jae Moung Kim. Near-optimum blind decision feedback equalization for ATSC digital television Receivers[J].ETRI Journal,2004,26(2) :101 - 111.
  • 6Zhang Q H, Benveniste A. Wavelet networks[ J]. IEEE Transactions on Neural Networks, 1992,3(6) :889 - 898.
  • 7Rahib H. Abiyev. Neuro-fuzzy system for equalization channel distortion [J]. International Journal of Computational Intelligence, 2005,1 (4) : 229 - 232.
  • 8Li X L, Zhang X D. A family of generalized constant modulus algorithms for blind equalization [ J]. IEEE Transactions on Communications,2006,54( 11 ) : 1913 - 1917.
  • 9G J Foschini,M J Gans. On limits of wireless communications in a fading environment when using multiple antennas[J]. Wireless Personnal Communications, 1998,6(3) :311 - 335.
  • 10I Barhumi,G Leus,M Moonen. Optimal training sequences for channel estimation in MIMO-OFDM system in mobile wireless channels[A]. In International Zurich Seminar on Broadband Communications, Access,Transmission, Networking[C]. Zurich, Switzerland, 2002.44 - 1 - 6.

共引文献65

同被引文献4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部