期刊文献+

基于PSO-BP神经网络的刀具寿命预测 被引量:8

Prediction of Cutting Tool Life based on PSO-BP Algorithm
在线阅读 下载PDF
导出
摘要 针对刀具寿命影响因素与刀具寿命之间的高度非线性关系,引入BP神经网络技术对刀具寿命进行预测,建立了刀具寿命预测模型。针对标准反向传播算法存在收敛速度慢、容易陷入局部极小值及全局搜索能力弱等缺陷,采用粒子群算法优化网络权值及阈值,提高了神经网络的预测精度。仿真结果表明,与标准BP神经网络相比,PSO-BP神经网络用于刀具寿命预测的精度更高。 According to the nonlinear relationship between factors and tool life, Artificial neural network was introduced into the prediction of tool life.In the prediction process, there were some disadvantages in Back Propagation algorithm , such as low converg ence speed,easily falling into local minimum point and weak global search capability. To settle these problems,function and weights are optimized by PSO algorithm. Therefore it has enhanced forecasting accurate.The simulation results show that the prediction of PSO-BP neural network has higher accuracy than that of the traditional BP neural network.
出处 《现代制造技术与装备》 2017年第11期53-54,60,共3页 Modern Manufacturing Technology and Equipment
关键词 粒子群算法 BP神经网络 刀具寿命 预测 particle swarm optimization, BP neural network, tool life, prediction
  • 相关文献

参考文献4

二级参考文献18

  • 1高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:96
  • 2江涛,张玉芳,王银辉.一种改进的粒子群算法在BP网络中的应用研究[J].计算机科学,2006,33(9):164-165. 被引量:10
  • 3高艳霞,李禹生.基于粒子群优化算法的BP神经网络在图像识别中的应用[J].武汉工业学院学报,2006,25(4):35-38. 被引量:8
  • 4RatnaweeraA, HalgamugeS, WatsonH. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation(S1089-778X), 2004, 8(3): 240-255.
  • 5Janson S, Middendorf M. A hierarchical particle swarm optimizer [C]// Proceedings of IEEE Congress on Evolutionary Computation, Canberra, Australia, Dec S-12, 2003: 770-776.
  • 6陆汝钤.世纪之交的知识工程与知识科学[M].北京:清华大学出版社,2001..
  • 7LOONEY C G. Pattern recognition using neural networks [M]. New York,N. Y. ,USA: Oxford University Press,1997.
  • 8HAYKIN S. Neural networks a comprehensive foundation [M]. 2nd ed. New York,N. Y. ,USA:Printice-Hall,1994.
  • 9BALAKRISHNAN K,HONAVAR V. Improving convergence of back propagation by handling flat-spots in the output layer[C]//Proceedings of the 3rd International Conference on Artificial Neural Networks. Brighton, UK:Neural Networks, 1992:139-144.
  • 10PAREKH R, BALAKRISHNAN K, HONAVOR V. An empirical comparison of flat-spot elimination techniques in backpropagation networks[C]//Proceedings of the 3rd Workshop on Neural Networks-WNN' 92. San Diego,Cal. , USA: Society for Computer Simulation, 1992 : 55-60.

共引文献47

同被引文献78

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部