摘要
提出了一种考虑隔离系数和非线性感染率的改进SIRS模型用以描述病毒在网络中的传播过程;通过分析了网络在病毒攻击后的最终状态,并得出了使系统最终稳定的充要条件;当系统满足充要条件时,系统最终稳定于无病平衡点即感染节点消失,当系统不满足充要条件时系统最终稳定于地方病平衡点,最终感染节点数量会稳定在一定比例;除此之外讨论了不同隔离系数对网络安全的影响,最后通过仿真验证分析结论。
This paper proposes an improved SIRS (Susceptible-Infectious-Removed- Susceptible) model in consideration of the isolation factor and nonlinear incidence to describe the propagate process of virus in the network. By analyzing the final state of the network after the virus attack, the necessary and sufficient condition for the final stability of the system is obtained. When the system satisfies the sufficient and necessary condition, it finally stabilizes at the disease-free equilibrium point, i.e., the infected node disappears, otherwise, the system finally stabilizes at the endemic equilibrium, and the number of infected nodes will be stabilized at a certain proportion. In addition, the influence of different isolation factors on the network security is discussed. Finally, the analysis conclusion is verified by simulation.
出处
《控制工程》
CSCD
北大核心
2017年第12期2566-2570,共5页
Control Engineering of China
基金
北京市职业院校教师素质提高工程-优秀青年骨干教师支持项目(PXM2015_014225_000032)