期刊文献+

SCWR堆芯稳态性能分析程序计算偏差分析

Study on Calculation Difference of the SCWR Core Steady State Analysis Code
原文传递
导出
摘要 针对剧烈传热情况下超临界水堆堆芯稳态性能分析程序SNTA与SRAC堆芯轴向功率分布计算结果偏差较大的问题,分析偏差产生的主要原因。逐一排查影响因素,确认轴向功率分布偏差主要源于截面反馈作用不同。SRAC程序与SNTA程序采用的截面数据库和能群结构不同,SRAC程序计算的反应性密度系数相对较大,密度分布与功率分布的反馈作用更为显著,轴向功率分布曲线更为陡峭。相较于SRAC程序,采用精细能群结构的SNTA程序更适用于具备强核热耦合特性且中子能谱偏硬的超临界水堆堆芯的耦合计算与性能分析。 A coupled neutronics/thermal-hydraulics (N/T) three dimensional code system SNTA is developed for SCWR core steady state analysis.This paper studies the calculation difference between the SNTA code and the SRAC code. By using the impacts exclusive method, it is confirmed that the calculation difference between these two code is caused by the different feedback of the reaction cross-section. The reaction cross-section data and the energy group structure of the SRAC code differs from the SNTA code, and the density coefficient of reactivity calculated by the SRAC code is higher, which means the feedback of the density and power distribution is bigger and the axial power distribution varies rapidly.Compare to the SRAC code, the SNTA is more suitable for the SCWR core steady state analysis by coupling neutronics and thermal-hydraulics.
出处 《核动力工程》 EI CAS CSCD 北大核心 2017年第6期1-4,共4页 Nuclear Power Engineering
关键词 超临界水堆 稳态性能分析 轴向功率分布 计算偏差 能群结构 Supercritical water-cooled reactor, Steady state analysis, Axial power distributions, Calculation difference, Energy group structure
  • 相关文献

参考文献3

二级参考文献17

  • 1赵文博.瞬态节块格林函数方法及其与热工-水力耦合研究[D].清华大学博士学位论文,2012.
  • 2Yamaji A,Kamai K,Oka Y. Improved Core Design of the High Temperature Supercritical-Pressure Light Water Reactor[J].Annals of Nuclear Energy,2005.651-670.
  • 3Schulenberg T,Starflinger J. Core Design Concepts for High Performance Light Water Reactors[J].Nuclear Engineering and Technology,2007,(40):249-256.
  • 4Ma Y;Chai X;Wang Y.Development of the CASIR Code System for SCWR Core Steady State Design[A]陕西西安,2012.
  • 5Akifumi Yamji,Yoshiaki Oka,Seiichi Koshizuka. Three-Dimensional Core Design of High Temperature Supercritical-Pressure Light Water Reactor with Neutronic and Thermal-Hydraulic Coupling[J].Journal of Nuclear Science and Technology,2005,(01):8-19.
  • 6Yamaji A,Kamei K,Oka Y. Improved Core Design of the High Temperature Supercritical-Pressure Light Water Reactor[J].Annals of Nuclear Energy,2005,(07):651-670.
  • 7Maraczy Cs,Hegyi Gy,Hordosy G. HPLWR Equilibrium Core Design with the KARATE Code System[J].Progress in Nuclear Energy,2011,(03):267-277.
  • 8姚栋;李大图.三维堆芯中子扩散细网格有限差分临界-燃耗计算程序研制[A],20067.
  • 9Jianqiang Shan,Bo Zhang,Changying Li. SCWR Subchannel Code ATHAS Development and CANDU-SCWR Analysis[J].Nuclear Engineering and Design,2009,(10):1979-1987.
  • 10DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum.A Technology Roadmap for Generation IV Nuclear Energy Systems[R].U.S.,2002.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部