期刊文献+

一种光学通道开放且适合构建晶格的静电阱

Electrostatic Trap Suitable for Construction of Lattices with Opened Optical Access
原文传递
导出
摘要 提出了一种用三个带电球电极形成一个光学通道开放、针对弱场搜寻态冷极性分子的静电囚禁方案。给出了方案图,用镜像法推导了空间电场分布的解析解,并利用有限元软件得到了电场分布的数值解。采用经典蒙特卡罗法模拟了冷极性分子被装载和囚禁于静电阱的动力学过程。研究了入射分子束速度和装载时刻对装载效率的影响,给出了被囚禁的冷分子的温度。讨论了所提方案在芯片表面囚禁,尤其是在静电晶格方面的潜在应用。结果表明,装载效率可以达到47.4%,阱中冷分子的温度为25.4mK。 An electrostatic trapping scheme using three charged spherical electrodes with opened optical access for cold polar molecules in the weak-seeking states is proposed, and the schematic drawing is given. The analytical expressions for the space electrical field distribution are derived with the image charge method. The numerical solution of electrical field distribution is calculated by the finite element software. Dynamic process of the loading and trapping cold polar molecules in an electrostatic trap is simulated with the classical Monte Carlo method. The influences of velocity of the incident molecular beam and loading time on the loading efficiency are studied, and the temperature of the trapped cold molecules is given. Some potential applications of the scheme in the electrostatic surface trapping especially the electrostatic lattices for cold polar molecules are discussed. Results show that the loading efficiency can reach 47.4%, and the temperature of trapped cold molecules is 25.4 mK.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第12期26-36,共11页 Acta Optica Sinica
基金 国家自然科学基金青年科学基金(11504318) 江苏省高校自然科学基金(16KJD140001)
关键词 原子与分子物理学 冷极性分子 蒙特卡罗法模拟 静电晶格 有限元分析 atomic and molecular physics cold polar molecules simulations by Monte Carlo method electrostatic lattices: finite element analvsis
  • 相关文献

参考文献3

二级参考文献72

  • 1Schnell M and Meijer G 2009 Angew. Chem. Int. Ed. 48 6010.
  • 2Friedrich B and Doyle J M 2009 ChemPhysChem 10 604.
  • 3van de Meerakker S Y T, Bethlem H L, Vanhaecke N and Meijer G 2012 Chem. Rev. 112 4828.
  • 4Lemeshko M, Krems R V, Doyle J M and Kais S 2013 Mol. Phys. 111 1648.
  • 5Hogan S D, Motsch M and Merkt M 2011 Phys. Chem. Chem. Phys. 13 18705.
  • 6Veldhoven J V, Kupper J, Bethlem H L, Sartakov B, vanRoij A J A and Meijer G 2004 Eur. Phys. J. D 31 337.
  • 7Filsinger F, Erlekam U, Von Helden G, Kupper J and Meijer G 2008 Phys. Rev. Lett. 100 133003.
  • 8Gilijamse J J, Hoekstra S, vande Meerakker S Y T, Groenenboom G C and Meijer G 2006 Science 313 1617.
  • 9Willitsch S, Bell M T, Gingell A D, Procter S R and Softley T P 2008 Phys. Rev. Lett. 100 043203.
  • 10Otto R, Mikosch J, Trippel S, Weidemuller M and Wester R 2008 Phys. Rev. Lett. 101 063201.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部