期刊文献+

基于多示例学习的时序离群点检测算法研究 被引量:2

Multi-instance-learning Based Time Series Outlier Detection Algorithm
在线阅读 下载PDF
导出
摘要 在FIndCBLOf算法的基础上,提出了一种基于多示例学习的FindCBLOF离群点检测算法(MIL-FindCBLof)用于时序离群点检测.算法首先对数据进行分段聚集,再利用多示例框架,封装每个对象,以此保留每个对象的属性,然后采用全局策略计算对象的因子数值,最后通过计算平均因子来确定离群序列.在实际企业的实时采集监控系统中,将MIL-FindCBLof算法与其它经典离群点检测算法进行实验对比,结果表明本文提出的MILFindCBLof算法相对其它算法提高了检测的全面性和准确性. On the basis of the FIndCBLOf algorithm, this paper proposes a FindCBLOF outlier detection algorithm (MIL-FindCBLof) for Multi instance learning based the detection of time series outliers. Firstly, the data were gathered using piecewise multi instance framework to package each object in order to preserve the properties for each object, to calculate the object factor with global strategy, to determine the outlier sequence by calculating the average factor. In the real-time monitoring system of practical enterprise MIL-FindCBLof algorithm will be compared with other classical outlier detection algorithm by experiments. The results show that the proposed MIL- FindCBLof algorithm compared with other algorithms in this paper can improve the accuracy and comprehensiveness of detection.
出处 《微电子学与计算机》 CSCD 北大核心 2018年第1期46-49,55,共5页 Microelectronics & Computer
关键词 机器学习 时序离群点 多示例学习 聚类 平均因子 machine learning sequential outlier muhi instance learning clustering average factor
  • 相关文献

参考文献1

二级参考文献96

  • 1NIST SP800-82.Guide to Industrial Control Systems(ICS)Security[S].Gaithersburg,USA:National Institute of Standards and Technology(NIST),2011.
  • 2Simon H A.The architecture of complexity[C] //Proceedings of the American Philosophical Society.Philadelphia,USA:Batsford,1962:467-482.
  • 3Bishop M.Computer Security[M].Boston,USA:Addison Wesley,2003.
  • 4Department of Homeland Security(DHS).Cyber Security Assessments of Industrial Control System[S].Washington DC,USA:Department of Homeland Security(DHS),2010.
  • 5The European Network and Information Security Agency(ENISA).Protecting Industrial Control Systems,Recommendations for Europe and Member States[R].Heraklion,Greece:Recommendations for Europe and Member States,2011.
  • 6Byres E J,Kay J,Carter J.Myths and facts behind cyber security and industrial control(2003)[Z/OL].(2010-02-12),http://www.pimaweb.org/conference/april2003/pdfs/MythsAndFactsBehindCyberSecurity.pdf.
  • 7David A.Multiple Efforts to Secure Control Systems Are Under Way,but Challenges Remain,GAO-07-1036[R].Washington DC,USA:US Government Accountability Office(US GAO),2007.
  • 8IEC61508.Functional Safety of E/E/PE Safety-Related Systems[S].Geneva,Switzerland:International Electrotechnical Commission(IEC),2000.
  • 9Piètre-Cambacédès L,Chaudet C.The SEMA referential framework:Avoiding ambiguities in the terms“security”and“safety”[J].International Journal of Critical Infrastructure Protection,2010,3(2):55-66.
  • 10NIST906330.Security Assurance Levels:A Vector Approach to Describing Security Requirements[S].Gaithersburg,USA:National Institute of Standards and Technology(NIST),2010.

共引文献181

同被引文献16

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部