期刊文献+

一种改进的自适应匹配滤波方法

Modified adaptive matched filter
在线阅读 下载PDF
导出
摘要 针对雷达目标检测中由于训练数据缺失导致传统自适应检测方法的检测性能下降的问题,提出一种改进的自适应匹配滤波方法.该方法首先将杂波用自回归过程表示;然后假设自回归参数已知,推导出广义似然比检验表达式;最后将采用训练数据估计得到的自回归参数的最大似然估计值代入广义似然比检验表达式中,代替已知的自回归参数.仿真实验结果表明,与传统的自适应方法相比,这种方法能在训练数据不足时提高检测性能.当雷达回波数目较大时,这种方法的检测性能接近理想的匹配滤波方法. In order to overcome the detection degradation for the conventional detectors in the limited- training environment, a modified adaptive matched filter is proposed by modeling the disturbance as an autoregressive process with unknown parameters. The detector is derived by resorting to a two-step design procedure: first derive the generalized likelihood ratio test under the assumption that the parameters of the autoregressive process are known, and then, the maximum likelihood estimates of the parameters, based on the training data, are substituted in place of the true parameters into the test. The detection performance of the new receiver shows that the proposed receiver can lead to a noticeable performance improvement over the conventional adaptive matched filter. For a moderate size of radar echoes, the proposed detector performs close to the optimum matched filter even in the limited-training environment.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2018年第1期12-16,82,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61271297 61272281 61301284) 博士学科点科研专项基金资助项目(20110203110001) 国家部委预研基金资助项目(9140A07020913DZ01001)
关键词 雷达检测 自适应匹配滤波 自回归建模 radar detection adaptive matched filter autoregressive process
  • 相关文献

参考文献2

二级参考文献31

  • 1Kelly, E J. An Adaptive Detection Algorithm [J]. IEEE Trans on Aerosp Electron Syst, 1986, 22(1) : 115-127.
  • 2Robey F C, Fuhrmann D R, Nitzberg R, et al. A CFAR Adaptive Matched Filter Detector [J]. IEEE Trans on Aerosp Electron Syst, 1992, 28(1) : 208-216.
  • 3Kay S'M. Fundamentals of Statistical Signal Processing, Detection Theory [M]. Englewood Cliffs: Prentice-Hall, 1998.
  • 4de Maio A, Iommelli S. Coincidence of the Rao Test, Wald Test, and GLRT in Partially Homogeneous Environment [J]. IEEE Signal Processing Letter, 2008(15) : 385-388.
  • 5Melvin W L. Space-time Adaptive Radar Performance in Heterogeneous Clutter [J]. IEEE Trans on Aerosp Electron Syst, 2000, 36(2): 621-633.
  • 6Ohnishi K, Bergin J S, Teixeira C M, et al. Site-Specific Modeling Tools for Predicting the Impact of Corrupting Mainbeam Targets on STAP [C]//Proc of the 2005 IEEE Radar Conf. Alexandria: IEEE, 2005: 393-398.
  • 7Wang Pu, Li Hongbin, Himed B. A Bayesian Parametric Test for Multichannel Adaptive Signal Detection in Nonhomogeneous Environments [J]. IEEE Signal Processing Letter, 2010, 17(4) : 351-354.
  • 8Capraro G T, Wicks M C. Waveform Diversity and Knowledge Based Signal Processing in Distributed Radar [C]//Proc of the 2009 IEEE Radar Conference. Pasadena: IEEE, 2009: 1-6.
  • 9de Maio A, Farina A, Foglia G. Knowledge-Aided Bayesian Radar Detectors & Their Application to Live Data Aerospace and Electronic Systems [J].IEEE Trans on Aerosp Electron Syst, 2010, 46(1) : 170-183.
  • 10Bandiera F, Besson O, Ricci G. Knowledge-aided Bayesian Covariance Matrix Estimation in Compound Gaussian Clutter [C]//Proc 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP. Dallas: IEEE, 2010 : 2574-2577.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部