期刊文献+

开槽防冲板对卧式冷凝器强化换热数值模拟与试验研究 被引量:1

Numerical simulation and experimental study on heat transfer enhancement of horizontal condenser with perforated impingement plate
在线阅读 下载PDF
导出
摘要 以某型卧式冷凝器作为研究对象,提出了一种适用于卧式冷凝器的开槽防冲板。采用壁面冷凝模型,对该冷凝器壳侧进行三维数值模拟,分别研究了防冲板高度和开槽长度对壳侧冷凝换热性能的影响。模拟结果表明:在满足国标的设计要求下,卧式冷凝器防冲板最佳构型为长100 mm,宽100mm,高20 mm,沿换热管横向开槽,内槽宽5 mm,外槽宽8 mm,槽长25 mm,整体开孔率为0.31,此时换热效果最佳。对工业级别的卧式冷凝器壳侧冷凝进行了三维模拟,模拟结果与试验数据吻合较好,平均偏差为8.9%,具有一定的工程运用价值。试验结果表明:在壳侧进口流速为10.6 m/s时,添加优化后的开槽防冲板,冷凝换热系数平均可提升12.1%。研究结果为管壳式冷凝器壳侧冷凝强化以及防冲板结构设计研究提供了参考。 Taking a horizontal tube-shell condenser as the research object,a perforated impingement plate( PIP) is presented for the horizontal condenser. The wall condensation model is used to simulate the condensation of the condenser shell side. The influences of the height and slot length of the PIP on the condensation heat transfer performance of the shell side are studied respectively.The simulating results show that under the requirements of national standard,the optimum PIP's structure is 20 mm high,100 mm wide,100 mm long,slotting along horizontal of heat exchange tube,5 mm inner slot wide,8 mm outer slot wide,25 mm slot long,and opening rate of 0. 31. Three-dimensional simulation is made on the condensation of the condenser shell side in industrial grade,and the simulation results and test data coincide well with average deviation of 8. 9%,which has engineering application value. Experimental results show that the shell side condensation heat transfer coefficient of the condenser can be increased by 12. 1%,compared to the one without PIP,which provides a reference for the shell side condenser condensation enhancement and the design of the impingement plate structure.
出处 《能源化工》 2017年第6期42-47,共6页 Energy Chemical Industry
基金 国家自然科学基金项目(51406081)
关键词 防冲板 冷凝强化 数值模拟 优化设计 试验验证 impingement plate condensation enhancement numerical simulation optimum design experimental verification
  • 相关文献

参考文献4

二级参考文献52

  • 1刘启斌,何雅玲,张定才,陶文铨.R123在水平双侧强化管外池沸腾换热[J].化工学报,2006,57(2):251-257. 被引量:15
  • 2Marto P J. An evaluation of film condensation on horizontal integral fin tubes. Journal of Heat Transfer, 1988, 110: 1287- 1305.
  • 3Browne M W, Bansal P K. An overview of condensation heat transfer on horizontal tube bundles. Applied Thermal Engineering, 1999, 19:565- 594.
  • 4Nusselt W. Die oberflachenkondensation des wasserdampfes. Z. Vereines Deutsch.Ing., 1916, 60: 541-546, 569 -575.
  • 5Beatty K O, Katz D L. Condensation of vapours on outside of finned tubes. ChemicalEngineering Progress, 1948, 44 (1): 55-70.
  • 6Karkhu V A, Borovkov V P. Film condensation of vapour at finely-finned horizontal tubes. Heat Transfer Soviet Research, 1971 (3): 183- 191.
  • 7WuPeiyi(吴沛宜).A criterial equation for condensation heat transfer of R12 and R113 on single horizontal finned tubes[J].西安交通大学学报,1979,1(3):1-10.
  • 8Rudy T M, Webb R L. Theoretical model for condensation on horizontal integral fin tubes. AIChE Symp. Ser. , 1983 (79) : 11- 18.
  • 9Webb R I., Rudy T M, Keswan S T. Prediction of the condensation coefficient on horizontal integral -fin tube. Journal of Heat Transfer, 1985, 107:369 -376.
  • 10Honda H, Nozu S. A prediction method for heat transfer during film condensation on horizontal low integral- fin tubes. Journal of Heat Transfer, 1987, 109:218-225.

共引文献49

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部