期刊文献+

改进的经验小波变换在滚动轴承故障诊断中的应用 被引量:23

Application of Enhanced Empirical Wavelet Transform to Rolling Bearings Fault Diagnosis
在线阅读 下载PDF
导出
摘要 经验小波变换是一种基于Fourier频谱特性,通过构建自适应小波滤波器组来分析复杂多分量信号的方法。该方法能够有效识别信号中的不同模态分量,但由于其Fourier频谱分割问题,在处理噪声及不稳定信号方面有所欠缺。针对这一问题,采用改进的经验小波变换方法,将信号分解为具有物理意义的经验模态。改进的经验小波变换主要考虑被处理信号的频谱形状,通过采用基于顺序统计滤波器(OSF)的包络方法以及遵循三个准则来获取有效峰值的方法,改进Fourier频谱分割过程。将改进的方法应用于滚动轴承故障诊断中,由于改进的经验小波变换能够将振动信号分解为一系列单分量成分,因此在轴承振动信号包络谱中能够清晰的发现故障特征。通过对滚动轴承振动模拟信号和实验信号的分析验证了该方法的有效性。 The empirical wavelet transform(EWT) is a novel method for analyzing the multi-component signals by constructing an adaptive filter bank.Although it is an effective tool to identify the signal components,it has drawback in dealing with some noisy and non-stationary signals due to its coarse spectrum segmentation.Targeting this problem,an enhanced EWT(EEWT) is proposed.In this method,the signal is decomposed into several empirical modes with physical meanings.This method ameliorates the drawback of EWT by taking the spectrum shape of the processed signal into account.It improves the segmentation process by adopting the envelop approach based on the order statistics filter(OSF) and applying three criteria to pick out useful peaks.The envelope spectrums of the extracted empirical modes are applied to rolling bearing fault diagnosis.Because the EEWT can decompose vibration signal into a set of mono-components,fault features can be found clearly in the envelop spectrum.The effectiveness of the proposed method is verified by a simulation signal and a real signal captured from the test rig.
出处 《噪声与振动控制》 CSCD 2018年第1期199-203,共5页 Noise and Vibration Control
基金 上海市科学技术委员会基础研究资助项目(15JC1402600)
关键词 振动与波 改进经验小波变换 顺序统计滤波器 三种筛选准则 轴承故障诊断 vibration and wave EEWT OSF three filtering criteria rolling bearings fault diagnosis
  • 相关文献

参考文献1

二级参考文献22

  • 1Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London, 1998,454(1971): 903 -995.
  • 2Xiaomin Zhao, Tejas H. Patel, Ming J. Zuo. Multivariate EMD and full spectrum based condition monitoring for rotating machinery[J]. Mechanical Systems and Signal Processing, 2012, 27: 712-728.
  • 3Michael Feldman. Theoretical analysis and comparison of the Hilbert transform decomposition methods[J]. Mechanical Systems and Signal Processing, 2008, 22:509-519.
  • 4Smith J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
  • 5Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1-41.
  • 6Matej Zvokelj, Samo Zupan, Ivan Prebil. Multivariate and multiscale monitoring of large-size low-speed bearings using ensemble empirical mode decomposition method combined with principal component analysis[J]. Mechanical Systems and Signal Processing, 2010, (24): 1049-1067.
  • 7Robert B. Randall, Jerome Antoni. Rolling element bearing diagnostics-A tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25: 485-520.
  • 8陈略,訾艳阳,何正嘉,成玮.总体平均经验模式分解与1.5维谱方法的研究[J].西安交通大学学报,2009,43(5):94-98. 被引量:71
  • 9刘卫兵,李志农,蒋静.基于局域均值分解和Wigner高阶矩谱的机械故障诊断方法的研究[J].振动与冲击,2010,29(6):170-173. 被引量:10
  • 10张玲玲,骆诗定,肖云魁,赵懿冠,廖红云.集合经验模式分解在柴油机机械故障诊断中的应用[J].科学技术与工程,2010,10(27):6745-6749. 被引量:10

共引文献29

同被引文献206

引证文献23

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部