期刊文献+

能量受限的单移动设备无线充电调度算法 被引量:4

Wireless Charging Scheduling Algorithm of Single Mobile Vehicle with Limited Energy
在线阅读 下载PDF
导出
摘要 基于磁耦合谐振的多节点充电技术为解决无线传感网络的健壮性问题提供了潜在的解决方法。为了减少充电设备的移动能耗,保证充电规划的可调度性,结合磁耦合谐振的充电效率,采用蜂窝网状结构将网络分割成若干充电区域,提出了基于移动充电设备的无线传感器网络充电调度算法。由于实际的移动设备能量通常有限,在每个充电周期内综合考虑移动设备能量、节点剩余能量等,提出了自适应动态算法以自动选择k个充电区域。规划充电路径时,采用实时性较好的弹性网络算法来满足网络节点的充电需求。仿真结果表明,充电设备能量的大小会直接影响网络的总能量与最小剩余能量,算法在设备能量有限时能够最大化网络的最小能量,延长网络的生命周期。 Multi-node charging technology based on magnetic resonance coupling provides a potential solution for the robustness of wireless sensor networks.Considering the charging efficiency of magnetic resonance coupling,cellularstructure was adopted to divide the network into several charging areas,and a charging scheduling algorithm in wireless sensor network based on mobile charger was proposed,so as to reduce the energy consumption of charging devices and guarantee schedulability of charging plans.A self-adaptive dynamic algorithm for automatically selecting kcharging areas was raised to comprehensively consider the energy of mobile charger,residual energy of nodes and other factors during each charging period.When planning the route,elastic network algorithm with good timeliness was adopted to meet demands.The simulation results show that the energy of mobile charger has direct impact on total energy and minimum residual energy of networks.When the energy of mobile charger is limited,the proposed algorithm can maximize minimum network energy and extend the life cycle of the network.
出处 《计算机科学》 CSCD 北大核心 2018年第3期108-114,共7页 Computer Science
基金 国家自然科学基金资助项目(61379123 61402414 61402415)资助
关键词 可充电无线传感网络 充电调度 弹性网络 移动无线充电 Rechargeable wireless sensor networks Charging scheduling Elastic networks Mobile wireless charging
  • 相关文献

参考文献5

二级参考文献135

  • 1李凤保,李凌.无线传感器网络技术综述[J].仪器仪表学报,2005,26(z2):559-561. 被引量:69
  • 2王玮.建立21世纪无所不在的网络社会——浅谈日本u-Japan及韩国u-Korea战略[J].信息网络,2005(7):1-4. 被引量:12
  • 3Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey. Computer Networks, 2008,52(12):2292-2330. [doi: 10.1016/ j.eomnet.2008.04.002].
  • 4Schmitt S, Will H, Hillebrandt T, Kyas M. A virtual indoor localization testbed for wireless sensor networks. In: Knightly EW, ed. Proc. of the 10th Annual IEEE Communications Society Conf. on Sensor, Mesh and Ad Hoc Communicationsand Networks. Piscataway: IEEE, 2013. 239-241. [doi: 10.1109/SAHCN.2013.6644985].
  • 5Werner-Allen G, Johnson J, Ruiz M, Lees J, Welsh M. Monitoring volcanic eruptions with a wireless sensor network. In: Gayitcl E, Baydere S, Havinga P, eds. Proc. of the 2nd European Workshop on Wireless Sensor Networks. Piscataway: IEEE, 2005. 108-120. [doi: 10.1109/EWSN.2005.1462003].
  • 6Cerpa A, Elson J, Estrin D, Girod L, Hamilton M, Zhao J. Habitat monitoring: Application driver for wireless communications technology. ACM SIGCOMM Computer Communication Review, 2001,31(2-Supplement):20-41. [doi: 10.1145/844193.844196].
  • 7Mehta V, E1 Zarki M. A bluetooth based sensor network for civil infrastructure health monitoring. Wireless Networks, 2004,10(4): 401-412. [doi: 10.1023/B:WINE.0000028544.49457.eb].
  • 8Xu N, Rangwala S, Chintalapudi KK, Ganesan D, Broad A, Govindan R, Estrin D. A wireless sensor network for structural monitoring. In: Stankovic JA, ed. Proc. of the 2nd Int'1 Conf. on Embedded Networked Sensor Systems. New York: ACM Press, 2004. 13-24. [doi: 10.1145/1031495.1031498].
  • 9Matta N, Rahim-Amoud R, Merghem-Boulahia L, Jrad A. A wireless sensor network for substation monitoring and control in the smart grid. In: Guerrero JE, ed. Proc. of the 2012 IEEE Int'1 Conf. on Green Computing and Communications. Piscataway: IEEE, 2012.203-209. [doi: 10.1109/GreenCom.2012.39].
  • 10Hu X, Wang B, Ji H. A wireless sensor network-based structural health monitoring system for highway bridges. Computer Aided Civil and Infrastructure Engineering, 2013,28(3): 193-209. [doi: 10.1111/j. 1467-8667.2012.00781 .x].

共引文献69

同被引文献10

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部