期刊文献+

改进的自适应四阶偏微分方程的图像恢复算法 被引量:3

An Improved Image Restoration Algorithm Based on Adaptive Four-order Partial Differential Equation
在线阅读 下载PDF
导出
摘要 为了克服各项同性扩散和各项异性扩散模型使图像平滑过渡造成图像模糊、扩散不均匀出现"阶梯效应"等不足,提出了一种新的自适应四阶偏微分方程图像恢复算法。首先采用梯度模值构造边缘检测函数,区分出图像的边缘区、平坦区,再构造边缘扩散函数,根据图像的信息特征,使得该算法在图像梯度方向及其法向自适应地选取扩散方式,从而在平坦区域采用各项同性扩散更好地去除噪声,在边缘区域采用各项异性扩散保留边缘信息。实验结果表明,该算法在去噪和保留边缘的同时,保留了细节信息,提高了图像的峰值信噪比。 In order to overcome the shortcomings like ladder effect caused by image blur and uneven diffusion by image smoothing of the isotropic and anisotropic diffusion model,we propose a newimage restoration algorithm of adaptive four-order partial differential equation.First,we use the gradient modulus to build the edge detection function to distinguish the edge of the image area and flat area,and then construct the edge diffusion function.According to the characteristics of image,it makes the algorithm to adaptively select the diffusion mode in gradient and its normal direction.Therefore in the flat area,the kind of isotropic diffusion is used to remove the noise,and in the edge region,the kind of anisotropic diffusion is used to preserve the edge information.The experiments showthat the proposed algorithm can preserve the details while removing the noise and preserving the edges,and improve the peak signal to noise ratio of the image.
出处 《计算机技术与发展》 2018年第3期118-121,共4页 Computer Technology and Development
基金 陕西省自然科学基金(2015JQ1022)
关键词 四阶偏微分方程 各项同性扩散 各向异性扩散 边缘检测函数 扩散函数 four-order partial differential equation isotropic diffusion anisotropic diffusion edge detection function diffusion function
  • 相关文献

参考文献7

二级参考文献69

  • 1张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 2佟雨兵,胡薇薇,杨东凯,张其善.视频质量评价方法综述[J].计算机辅助设计与图形学学报,2006,18(5):735-741. 被引量:48
  • 3Daly S.The visible difference predictor:an algorithm for the assessment of image fidelity,digital images and human vision[M].Massachusetts,U S A:The MIT Press,1993:179 -206
  • 4Heeger D J,Teo T C.A model of perceptual image fidelity[C]//Proceeding of 1995 Internation Conference of Image Processing.Washington:[s.N.],343-345
  • 5Watson A B,Solomon J A.Model of visual contrast gain control and pattern masking[J].Journal of Optical Society of America,1997,14(9):2379-2391
  • 6Vanden C J,Branden Lambrecht,Costantini D M,et al,Quality assessment of motion rendition in video coding[J].IEEE Trans Circuits and Systems for Video Tech,1999,9(5):766-782
  • 7Zhou Wang,Liang Lu,Alan C Bovik.Video quality assessment using structural distortion measurement[C]// Proceeding of 2002 Intemation Conference of Image Processing.Rochester,New York:[s.N.],Ⅲ-65-68
  • 8RRNR-TV group test plan.Draft version 1.7[EB/OL].2004[2005 -01-10].http://www.vqeg.org
  • 9Wang Zhou,Alan C Bovik,Eero P.Simoncelli.Handbook of image and video processing[M].2 nd ed,New York:Academic Press,2005
  • 10Vladimir N Vapnik.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks,1999,10 (5):988-999

共引文献48

同被引文献32

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部