期刊文献+

面向大规模噪声数据的软性核凸包支持向量机 被引量:6

Soft Kernel Convex Hull Support Vector Machine for Large Scale Noisy Datasets
在线阅读 下载PDF
导出
摘要 现有的面向大规模数据分类的支持向量机(support vector machine,SVM)对噪声样本敏感,针对这一问题,通过定义软性核凸包和引入pinball损失函数,提出了一种新的软性核凸包支持向量机(soft kernel convex hull support vector machine for large scale noisy datasets,SCH-SVM).SCH-SVM首先定义了软性核凸包的概念,然后选择出能代表样本在核空间几何轮廓的软性核凸包向量,再将其对应的原始空间样本作为训练样本并基于pinball损失函数来寻找两类软性核凸包之间的最大分位数距离.相关理论和实验结果亦证明了所提分类器在训练时间,抗噪能力和支持向量数上的有效性. Current support vector machines (SVMs) for large-scale datasets classification problems are almost sensitive to noises. To overcome this problem, a new soft kernel convex hull support vector machine called SCH-SVM is proposed based on the soft kernel convex hull and pinball loss function. SCH-SVM extracts the soft convex hull vectors in the kernel space,which can represent geometric profile of data in the kernel space. Then SCH-SVM represents the original samples which projected as the soft convex hull vectors for the training samples, and finds the maximum quantile distance between soft kernel convex hulls belonging to two classes by using pinball loss function. Theoretical analysis and numerical experiments show that SCH-SVM has distinctive ability of training time, noise resistibility, and the number of support vectors.
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第2期347-357,共11页 Acta Electronica Sinica
基金 国家自然科学基金(No.61572236 No.61572085) 江苏省自然科学基金(No.BK20160187)
关键词 大规模数据 噪声 软性核凸包 pinball损失函数 分类 large scale datasets noise soft kernel convex hull pinball loss function classification
  • 相关文献

参考文献1

二级参考文献30

  • 1Wu M R,Ye J P.A small sphere and large margin approach for novelty detection using training data with outliers[J].IEEE Trans on PAMI,2009,31 (11):2088-2092.
  • 2Sch(O)lkopf B,Smola A,Williamson RC,Bartlett PL.New support vector algorithms[J].Neural Computation,2000,12:1207-1245.
  • 3Cover TM,Hart PE.Nearest neighbor pattern classification[J].IEEE Trans on Information Theory,1967,13(1):21-27.
  • 4Babich G A,Camps O I.Weighted Parzen windows for iattern classification[J].IEEE Trans on PAMI,1996,18(5):567-570.
  • 5Marzio M DI,Taylor C C.Kernel density classification and boosting:an L2 analysis[J].Statistics and Computing,2005,15:113-123.
  • 6Angelov P P,Xiao W Z.Evolving fuzzy-rule-based classifiers from data streams[J].IEEE Trans on Fuzzy Systems,2008,16(6):1462-1475.
  • 7Tang B,Mazzoni D.Multiclass reduced-set support vector machines[A].Proc 23rd ICML[C].New York:ACM Press,2006.921-928.
  • 8Osuna E,Girosi F.Reducing the run-tirne complexity of support vector machines[A].In Advances in Kernel Methds:Support Vector Learning[C].MA:MIT Press,1999.271-283.
  • 9Dries G,Johan A K Suykens,Joos V.Reduce the amount of support vectors of SVM classifiers using Separable Case Approximation[DB/OL] ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/dgeebele/pub/SCA.pdf,2010-11-08.
  • 10Renzo P,Elisa R.Reduced complexity RBF classifiers with support vector centres and dynamic decay adjustment[J].Neurocompuing,2006,69 (16-18):2446-2450.

共引文献13

同被引文献66

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部