期刊文献+

物联网实时任务传输中链路传感节点的内存效率优化 被引量:3

Memory Efficiency Optimization of Link Sensing Nodes in Real-time Task Transfer of Internet of Things
在线阅读 下载PDF
导出
摘要 在物联网实时任务传输中,不同应用对链路传感节点内存的需求量不同,容易出现部分节点空间内存多,部分节点内存紧张的情况。为此,提出一种新的链路传感节点内存效率优化方法。介绍了TLSF的二级离散表管理机制和TLSF方法的弊端,在此基础上,通过TC-TLSF方法对物联网实时任务传输中链路传感节点内存效率进行优化处理。TC-TLSF方法通过模糊控制判断链路传感节点释放内存的过程中是否马上将空闲内存块结合在一起,通过最大隶属度原则对待释放内存块的模糊特征参数所属等级进行判断,求出合并系数,对得到的系数和动态阈值进行比较,判断是否延迟合并操作。介绍了模糊特征参数和模糊规则,确定动态阈值。通过对内存分配和内存释放的控制实现内存效率优化。实验结果表明,所提方法内存效率高。 In the real-time task transmission of internet of things,different applications have different memory requirements for link sensing nodes,which tend to have more memory in some nodes and more memory in some nodes. Therefore,a new method for optimizing memory efficiency of link sensing nodes is proposed. The management mechanism of TLSF two level discrete table and the disadvantages of TLSF method were introduced. On this basis,the memory efficiency of link sensing node is optimized by using TC-TLSF method in the real-time task transfer of internet of things. The TC-TLSF method by the fuzzy control process of judging the release of memory if the sensor node link will immediately free memory block together,by the principle of maximum membership degree to the fuzzy characteristic parameters of free memory block belongs to grade judgment,calculate the coefficient of consolidation,comparing the coefficient and dynamic threshold to determine whether the delay of the merge operation.Fuzzy feature parameters and fuzzy rules are introduced to determine the dynamic threshold. Through memory allocation and memory release control,memory efficiency optimization is achieved. Experimental results show that the proposed method has high memory efficiency.
出处 《科学技术与工程》 北大核心 2018年第3期57-62,共6页 Science Technology and Engineering
关键词 物联网 实时任务 传输 链路传感节点 内存效率 Internet of things real-time tasks transmission link sensing nodes memory efficiency
  • 相关文献

参考文献14

二级参考文献236

共引文献57

同被引文献31

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部