期刊文献+

基于模糊聚类规则的图像去雾方法研究

Research on image dehazing method based on fuzzy cluster
在线阅读 下载PDF
导出
摘要 有雾图像的复原问题已经成为了机器视觉领域研究的热点。在传统图像复原理论的基础上,提出一种新的基于模糊聚类规则图像去雾方法,用于恢复被雾影响的降质图像。利用模糊聚类的方法对有雾图像进行预处理,从而获取图像复原过程中的透射率参数。为获取有效的景深信息,将透射率图像与提取到的图像饱和度效果图通过多尺度金字塔细化策略进行有效融合,从而获得图像景深信息。最后,通过提取到的透射率和景深信息实现图像的复原。对比实验效果显示,提出的图像去雾算法能够有效去除图像中的雾信息,同时算法的计算速度相对较快。 The image restoration has become an active topic in machine vision. This paper presents a novel dehazing method based on fuzzy clustering rules for restoring the image degraded by fog. The fuzzy clustering method is used to preprocess the image degraded by fog or haze to obtain the transmission parameters in the process of restoration. The transmission map and the saturation image are fused by multi-scale pyramid thinning strategy for the image depth information. Finally, the image is recovered by extracting the transmission and the image depth information. The experimental results show that the method can effectively remove the fog information in the image and the algorithm has a higher computing speed.
作者 姚明海 齐妙
出处 《计算机工程与应用》 CSCD 北大核心 2018年第6期26-29,共4页 Computer Engineering and Applications
基金 辽宁省博士科研启动基金(No.201601349) 辽宁省教育厅科学技术青年项目(No.LQ2017004)
关键词 图像去雾 模糊聚类 透射率 机器视觉 image dehazing fuzzy cluster transmission machine vision
  • 相关文献

参考文献8

二级参考文献83

  • 1詹翔,周焰.一种基于局部方差的雾天图像增强方法[J].计算机应用,2007,27(2):510-512. 被引量:45
  • 2Tail R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 3Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): Article No. 72.
  • 4He K M, Sun J, Tang X O. Single image haze removal us- ing dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami. USA: IEEE, 2009. 1956-1963.
  • 5Tarel J P, Hautiere N. Fast visibility restoration from a sin- gle color or gray level image. In: Proceedings of the 12th IEEE International Conference oil Computer Vision. Kyoto, USA: IEEE. 2009. 2201-2208.
  • 6Namer E, Schectmer Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the 2005 Polarization Science arid Remote Sensing. San Diego, USA: SPIE, 2005. 36-45.
  • 7Cardei V C, Funt B, Barnard K. White point estimation for uncalibrated images. In: Proceedings of the 7th IS and T/SID Color Imaging Conference: Color Science, Systems and Applications. Scottsdale, 1999. 97-100.
  • 8Burt P J, Kolczynski IR J. Enhanced image capture through fllsion. In: Proceedings of the 4th Iuternational Confe, rence on Computer Vision. Berlin, USA: IEEE, 1993. 173-182.
  • 9Paris M, Fredo D. A fast approximation of the bilateral fil- ter using a signal processing approach. Ⅲ: Proeeedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 568-580.
  • 10Drago F, Myszkowski K, Annen T, Chiba N. Adaptive log- arithmic mapping for displaying high contrast sce,ms. Com- puter Graphics Forum, 2003, 22(3): 419-426.

共引文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部