期刊文献+

基于区域划分的DBSCAN多密度聚类算法 被引量:30

Multi-density clustering algorithm DBSCAN based on region division
在线阅读 下载PDF
导出
摘要 DBSCAN聚类算法使用固定的Eps和min Pts,处理多密度的数据效果不理想,并且算法的时间复杂度为O(N2)。针对以上问题,提出一种基于区域划分的DBSCAN多密度聚类算法。算法利用网格相对密度差把数据空间划分成密度不同的区域,每个区域的Eps根据该区域的密度计算自动获得,并利用DBSCAN算法进行聚类,提升了DBSCAN的精度;避免了DBSCAN在查找密度相连时需要遍历所有数据的不足,从而改善了算法效率。实验表明算法能有效地对多密度数据进行聚类,对各种数据的适应力较强,效率较优。 Because of the fixed Eps and min Pts,DBSCAN clustering algorithm is not ideal for multi-density data,and its time complexity is O( N2). Aiming at the above problems,this paper proposed a multi-density clustering algorithm DBSCAN based on region division. This algorithm used the relative grid density difference to divide the spatial data into different density regions,then generated different Eps automatically according to the different density of each region,and used DBSCAN algorithm to improve the accuracy. This idea kept DBSCAN from traversing of all data when it searched for density connected region. So it also improved the algorithm efficiency. Experiments show that the algorithm can effectively cluster the multi-density data. It has a better adaptability to various kinds of data and better efficiency.
作者 韩利钊 钱雪忠 罗靖 宋威 Han Lizhao;Qian Xuezhong;Luo Jing;Song Wei(Engineering Research Center of lnternet of Things Technology Applications for Ministry of Education,Jiangnan University,Wuxi Jiangsu 214122,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第6期1668-1671,1685,共5页 Application Research of Computers
基金 中央高校基础研究资助项目(JUSRP51510 JUSRP51635B)
关键词 区域划分 多密度 相对密度差 DBSCAN聚类 region division muhi-density relative density difference DBSCAN clustering
  • 相关文献

参考文献7

二级参考文献56

  • 1张海龙,王仁彪,聂俊,刘进忠.海量数据的网格启发信息密度聚类算法[J].吉林大学学报(工学版),2011,41(S2):254-258. 被引量:2
  • 2周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 3陈燕俐,洪龙,金达文,朱梧槚.一种简单有效的基于密度的聚类分析算法[J].南京邮电学院学报(自然科学版),2005,25(4):24-29. 被引量:8
  • 4邱保志,沈钧毅.基于扩展和网格的多密度聚类算法[J].控制与决策,2006,21(9):1011-1014. 被引量:25
  • 5CHEN M S, HAN J H, YU P S. Data mining: An overview from a database perspective [ J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 866 -883.
  • 6KAUFAN L, RPUSSEEUW P J. Finding groups in data: An introduction to cluster analysis [ M]. New York: John Wiley & Sons, 1990.
  • 7ESTER M, KRIEGEL H P, XU X W. Knowledge discovery in large SPATIAL database: Focusing techniques for efficient class identification [ C]//Proceedings of the 4th International Symposium on Advances in Spatial Databases, LNCS 951. London: Springer-Verlag, 1995:67-82.
  • 8ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial database with noise [ C]//KDD - 96: Proceedings of the 2nd International Conference on Knowledge Discovering and DataMining. Portland, Oregon: [ s. n.], 1996:226-231.
  • 9GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases [ C]// Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998:73-84.
  • 10AGRAWAL R, GEHRKE J, GUNOPOLOS D, et al. Automatic subspace clustering of high dimensional data for data mining application [C]// Proceedings of the ACM SIGMOD International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001:331-340.

共引文献185

同被引文献270

引证文献30

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部