期刊文献+

Control of Grain Size and Weight by the OsMKKK10-OsM KK4-OsMAPK6 Signaling Pathway in Rice 被引量:47

Control of Grain Size and Weight by the OsMKKK10-OsM KK4-OsMAPK6 Signaling Pathway in Rice
原文传递
导出
摘要 Grain size is one of the key agronomic traits that determine grain yield in crops. However, the mechanisms underlying grain size control in crops remain elusive. Here we demonstrate that the OsMKKK10-OsMKK4- OsMAPK6 signaling pathway positively regulates grain size and weight in rice. In rice, loss of OsMKKKIO function results in small and light grains, short panicles, and semi-dwarf plants, while overexpression of constitutively active OsMKKK10 (CA-OsMKKK10) results in large and heavy grains, long panicles, and tall plants. OsMKKK10 interacts with and phosphorylates OsMKK4. We identified an OsMKK4 gain-of-func- tion mutant (large11-1D)that produces large and heavy grains. OsMKK4A227T encoded by the large11-1D allele has stronger kinase activity than OsMKK4. Plants overexpressing a constitutively active form of OsMKK4 (OsMKK4oDD) also produce large grains. Further biochemical and genetic analyses revealed that OsMKKK10, OsMKK4, and OsMAPK6 function in a common pathway to control grain size. Taken together, our study establishes an important genetic and molecular framework for OsMKKK10-OsMKK4- OsMAPK6 cascade-mediated control of grain size and weight in rice. Grain size is one of the key agronomic traits that determine grain yield in crops. However, the mechanisms underlying grain size control in crops remain elusive. Here we demonstrate that the OsMKKK10-OsMKK4- OsMAPK6 signaling pathway positively regulates grain size and weight in rice. In rice, loss of OsMKKKIO function results in small and light grains, short panicles, and semi-dwarf plants, while overexpression of constitutively active OsMKKK10 (CA-OsMKKK10) results in large and heavy grains, long panicles, and tall plants. OsMKKK10 interacts with and phosphorylates OsMKK4. We identified an OsMKK4 gain-of-func- tion mutant (large11-1D)that produces large and heavy grains. OsMKK4A227T encoded by the large11-1D allele has stronger kinase activity than OsMKK4. Plants overexpressing a constitutively active form of OsMKK4 (OsMKK4oDD) also produce large grains. Further biochemical and genetic analyses revealed that OsMKKK10, OsMKK4, and OsMAPK6 function in a common pathway to control grain size. Taken together, our study establishes an important genetic and molecular framework for OsMKKK10-OsMKK4- OsMAPK6 cascade-mediated control of grain size and weight in rice.
出处 《Molecular Plant》 SCIE CAS CSCD 2018年第6期860-873,共14页 分子植物(英文版)
基金 This work was supported by grants from the National Basic Research Program of China (2016YFD0100402 2016YFD0100501 2017YFD0101701 2013CBA01401), the National Natural Science Foundation of China (91735302 31771340 31500976 91535203 31425004 31400249), the Chinese Academy of Sciences (XDA08020108), the Ministry of Agriculture of China (2014ZX08009-003), and the strategic pdodty research program "Molecular Mechanism of Plant Growth and Development" (XDBP401).
关键词 Oryza sativa grain size MAPK signaling cell proliferation Oryza sativa grain size MAPK signaling cell proliferation
  • 相关文献

参考文献1

二级参考文献3

共引文献32

同被引文献312

引证文献47

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部