期刊文献+

非光滑聚合博弈纳什均衡的分布式连续时间算法 被引量:3

Distributed continuous-time algorithm for Nash equilibrium seeking of nonsmooth aggregative games
在线阅读 下载PDF
导出
摘要 本文研究多智能体聚合博弈的分布式算法设计.其中,个体的成本函数具有非光滑性.提出一个连续时间分布式算法,使得每个个体仅利用本地数据及局部的信息交互就能达到纳什均衡.利用李雅普诺夫方法,证明了算法的收敛性.在此基础上,进一步研究了带有耦合不等式约束博弈的广义纳什均衡求解.仿真结果验证了方法的有效性. This paper studies distributed algorithm design for multi-agent aggregative games, where the cost functions of agents are nonsmooth. A distributed continuous-time algorithm is proposed whereby each agent can reach the Nash equilibrium by using local data and local information exchange. The convergence of the algorithm is proved by virtue of Lyapunov method. Furthermore, the generalized Nash equilibrium seeking problem for games with coupled inequality constraints is investigated. Simulations illustrate the effectiveness of our method.
作者 梁银山 梁舒 洪奕光 LIANG Yin-shan;LIANG Shu;HONG Yi-guang(Institute of Information Spreading Engineering,Changchun University of Technology,Changchun Jilin 130012,China;Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education,School of Automation and Electrical Engineering,University of Science and Technology Beijing,Beijing 100083,China;Institute of Systems Science,Academy of Mathematics and Systems Science,Chinese Academy of Science,Beijing 100190,Chin)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第5期593-600,共8页 Control Theory & Applications
基金 国家自然科学基金项目(61333001 61573344) 北京市重点学科共建项目(XK100080537) 北京科技大学中央高校基本科研业务费专项资金资助项目(FRF--TP--17--088A1)资助~~
关键词 博弈论 纳什均衡 分布式算法 连续时间算法 非光滑 galne theory Nash equilibrium distributed algorithm continuous-time algorithm nonsmoothness
  • 相关文献

参考文献2

二级参考文献28

  • 1D. E. Stewart. Rigid-body dynamics with friction and impact. SIAM Review, 2000, 42(1 ): 3 - 39.
  • 2J. Cortes. Discontinuous dynamical systems: A tutorial on solutions, nonsmooth analysis, and stability. IEEE ControlSystems Magazine, 2009, 28(3): 36 - 73.
  • 3G. Shi, Y. Hong. Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica, 2009, 45(5): 1165 - 1175.
  • 4M. S. Branicky, V. S. Borkar, S. K. Mitter. A unified framework for hybrid control: model and optimal control theory. IEEE Transactions on Automatic Control, 1998, 43(1 ): 31 - 45.
  • 5D. Feijer, F. Paganini. Stability of primal-dual gradient dynamics and applications to network optimization. Automatica, 2010, 46(12): 1974 - 1981.
  • 6V. Utkin. Sliding Modes in Control Optimization. Berlin: Springer, 1992.
  • 7R. W. Brockett. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory. R. W. Brockett, R. S. Millmann, H. J. Sussmann, eds. Boston: Birkhauser, 1983:181 - 191.
  • 8P. Yi, Y. Hong, F. Liu. Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Systems & Control Letters, 2015, 83:45 - 52.
  • 9J. P. Aubin, A. Cellina. Differential Inclusions. Berlin: Springer, 1984.
  • 10A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Boston: Kluwer Academic Publishers, 1988.

共引文献25

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部