期刊文献+

基于四通道卷积稀疏编码的图像超分辨率重建方法 被引量:2

Image super-resolution reconstruction based on four-channel convolutional sparse coding
在线阅读 下载PDF
导出
摘要 针对图像分辨率较低的问题,提出了一种基于四通道卷积稀疏编码的图像超分辨率重建方法。首先,该方法将输入图像依次翻转90°作为四通道的各自输入,通过低通滤波和梯度算子将输入图像分解成高频和低频部分;接着,分别利用卷积稀疏编码方法和三次插值方法对各通道低分辨率图像的高频部分和低频部分进行重建;最后,对四通道输出图像加权求均值获得重建的高分辨率图像。实验结果表明,所提方法比一些经典的超分辨率重建方法在峰值信噪比(PSNR)、结构相似度(SSIM)和抗噪性上具有更好的重建效果。所提方法不仅克服了重叠补丁破环图像补丁间一致性的缺陷,还提高了重建图像的细节轮廓,加强了重建图像的稳定性。 In order to solve the problem of low resolution of iamge, a new image super-resolution reconstruction method based on four-channel convolutional sparse coding was proposed. Firstly, the input image was turned over 90° in turn as the input of four channels, and an input image was decomposed into the high frequency part and the low frequency part by low pass filter and gradient operator. Then, the high frequency part and low frequency part of the low resolution image in each channel were reconstructed by convolutional sparse coding method and cubic interpolation method respectively. Finally, the fourchannel output images were weighted for mean to obtain the reconstructed high resolution image. The experimental results show that the proposed method has better reconstruction effect than some classical super-resolution methods in Peak Signal-to-Noise Ratio(PSNR), Structural SIMilarity(SSIM) and noise immunity. The proposed method can not only overcome the shortcoming of consistency between image patches destroyed by overlapping patches, but also improve the detail contour of reconstructed image, and enhance the stability of reconstructed image.
作者 陈晨 赵建伟 曹飞龙 CHEN Chen, ZHAO Jianwei , CAO Feilong(Department of Information and Mathematics, China Jiliang University, Hangzhou Zhejiang 310018, Chin)
出处 《计算机应用》 CSCD 北大核心 2018年第6期1777-1783,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61571410 61672477) 浙江省自然科学基金资助项目(LY18F020018)~~
关键词 图像重建 超分辨率 卷积稀疏编码 四通道 稳定性 image reconstruction super-resolution convolutional sparse coding four-channel stability
  • 相关文献

参考文献3

二级参考文献23

  • 1LI L. XING Y, CHEN Z,et al. A Curve-filtered FDK (C-FDK) re-construction algorithm for circular cone-beam CT[ J]. Journal of X-Ray Science and Technology, 2011, 19(3): 355 -371.
  • 2SONG B, PARK J, SONG W. A novel, fast, variable step size gra-dient method for solving Simultaneous Algebraic ReconstructionTechnique (SART) type reconstructions: an example application toCBCT[J]. Medical Physics, 2011,38(6): 3444.
  • 3DONOHO D L. Compressed sensing[ J]. IEEE Transactions on In-formation Theory, 2006, 52(4): 1289 - 1306.
  • 4CANDES E J,ROMBERG J K, TAO T. Stable signal recovery fromincomplete and inaccurate measurements [ J]. Communications onPure and Applied Mathematics, 2006, 59(8): 1207 - 1223.
  • 5LAUZIER P T, TANG J, CHEN G-H. Prior image constrained com-pressed sensing: Implementation and performance evaluation [ J].Medical Physics, 2012, 39(1): 66.
  • 6HAGER W W, PHAN D T,ZHANG H. Gradient-based methodsfor sparse recovery[ J]. SIAM Journal on Imaging Sciences, 2011,4(1): 146-165.
  • 7VOLZ R, CLOSE S. Inverse filtering of radar signals using com-pressed sensing with application to meteors [ J ]. Radio Science,2012, 47(6): RS0N05.
  • 8SIDKY E Y,PAN X. Image reconstruction in circular cone-beamcomputed tomography by constrained, total-variation minimization[J]. Physics in Medicine and Biology, 2008, 53(17): 4777.
  • 9PARK J C, SONG B, KIM J S, et al. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation forapplication to on-line IGRT[ J]. Medical Physics, 2012,39( 3):1207.
  • 10JENSEN T L, JORGENSEN J H, HANSEN P C, et al. Implemen-tation of an optimal first-order method for strongly convex total vari-ation regularization [ J]. BIT Numerical Mathematics, 2012, 52(2): 329 -356.

共引文献5

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部