期刊文献+

人脸超分辨率重建中投影空间的选择方法 被引量:2

A Selection Method of Projection Space for Face Super-Resolution Reconstruction
在线阅读 下载PDF
导出
摘要 针对人脸超分辨率重建中如何获得细节更为丰富的超分辨率重建结果问题,通过评估投影空间的一致性,给出了一种投影空间的选择方法。该方法首先根据图像样本空间与投影空间之间的映射关系计算高低分辨率图像样本所对应投影空间的投影值,然后随机选取若干对高低测试图像样本投影值作为重建目标,并通过邻域嵌入分别获取其对应的高低分重建权值,最后通过计算高低分重建权值间的余弦相似度,并进行直方图统计分析来评估投影空间的一致性并对投影空间进行选择。实验结果表明,该方法可以快速高效地对各投影空间进行评估与选择,其中优秀的投影空间能够将人脸超分辨率重建结果的峰值信噪比提升0.3dB左右。 A selection method of projection space based on assessing the consistency of projection spaces is proposed to achieve more detailed face super-resolution reconstruction results. Firstly , pairs of high and low resolutions are projected into a common space based on the mappingrelationship between the original space and the projection space. Secondly, weights ofreconstruction are calculated through a random selection of projected high and low resolution pairs to obtain cosine similarities. These cosine similarities are then used to evaluate and tochoose projection spaces with histogramming approach. Experiment results show the efficiency of the proposed method. Moreover, with a cautiously selected projection space, the corresponding face super-resolution algorithm achieves about a 0. 3 dB improvement on peak signal to noise ratio.
作者 张哲 齐春 张钊强 陈晓璇 ZHANG Zhe1, QI Chun1, ZHANG Zhaoqian1, CHEN Xiaoxuan2(1. School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;2. School of Information and Technology, Northwestern University, Xi'an 710049, Chin)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第8期43-48,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61572395 61675161)
关键词 人脸图像 超分辨率 投影空间 邻域嵌入 face image super-resolution projection space neighbor embedding
  • 相关文献

参考文献3

二级参考文献37

  • 1Baker S,Kanade T.Limits on super-resolution and how to break them.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):1167-1183.
  • 2Mohammad Djafari A.Super-resolution:A short review,a new method based on hidden Markov modeling of HR image and future challenges.Computer Journal,2009,52 (1):126-141.
  • 3Elad,M,Feuer A.Restoration of a single superresolution image from several blurred,noisy,and undersampled measured images.IEEE Transactions on Image Processing,1997,6(12):1646-1658.
  • 4Park S C,Park M K,Kang M G.Super-resolution image reconstruction:A technical overview.IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 5Lin Z C,Shum H Y.Fundamental limits of reconstructionbased superresolution algorithms under local translation.IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):83-97.
  • 6Freeman W T,Jones T R,Pasztor E C.Example-based super-resolution.IEEE Computer Graphics and Applications,2002,22(2):56-65.
  • 7Freeman W T,Pasztor E C,Carmichael O T.Learning lowlevel vision.International Journal of Computer Vision,2000,40(1):25-47.
  • 8Chang H,Yeung D Y,Xiong Y.Super-resolution through neighbor embedding//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).Washington,DC,USA,2004:I275-I282.
  • 9Gao X,Zhang K,Tao D,et al.Joint learning for single-image super-resolution via a coupled constraint.IEEE Transactions on Image Processing,2012,21(2):469-480.
  • 10Yang J,Wright J,Huang T S,et al.Image super-resolution via sparse representation.IEEE Transactions on Image Processing,2010,19(11):2861-2873.

共引文献21

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部