期刊文献+

基于卷积网络的视频目标检测 被引量:3

Video Object Detection Based on Convolution Network
在线阅读 下载PDF
导出
摘要 针对传统卷积神经网络层级较为浅,对物体识别精确度较低的原因,利用改进的深层卷积网络VGG16模型检测视频运动目标.首先,预处理过程中对数据集进行剪裁和旋转操作,补充数据集数量,以解决前期图像资源不足等问题;其次,在PASCAL VOC数据集上先预训练模型,接着加载自定义视频数据集对预训练模型进行第二次训练.实验结果表明,该网络模型能很好用于视频目标识别,提高了检测精确度,有效减少网络参数计算量,降低硬件内存资源消耗,具有较强的鲁棒性. Because the object detection accuracy is relatively low for the traditional convolutional neural network,so the convolution network based on more deeper structure VGG16 is used to detect video moving object in this paper.First of all,during preprocessing,cropping and rotating operations of data sets is applied in order to solve the shortage of early image resources and other problems.Secondly,the pretraining model of VGG16 network is adopted by PASCAL VOC data set.Then the second training is based on the the custom video data set.The result shows that the network model can be effectivity applied to video object recognition.The model has the high detection accuracy,reduces the calculation of network parameter and the consumption of memory resources,and has strong robustness.
作者 杨洁 陈灵娜 林颖 陈宇韶 陈俊熹 YANG Jie 1,CHEN Lingna 1,LIN Ying 1,CHEN Yushao 1,CHEN Junxi 2*(1.School of Computer,University of South China,Hengyang,Hunan 421001,China;2.Affiliated Nanhua Hospital,University of South China,Hengyang,Hunan 421002,Chin)
出处 《南华大学学报(自然科学版)》 2018年第4期61-68,共8页 Journal of University of South China:Science and Technology
基金 国家自然科学青年基金研究项目(61504055) 湖南省自然科学青年基金项目(2015JJ3110 2015JJ3105) 湖南省教育厅项目(15C1184) 湖南省研究生科研创新项目(CX2016B445)
关键词 卷积神经网络 SGD梯度下降 视频目标检测 模型训练 convolution neural network SGD gradient descent video target detection model training
  • 相关文献

参考文献4

二级参考文献92

  • 1WANG X,TANG X.Dual-space linear discriminant analysis for face recognition[C]//CVPR 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE ?2004?2?564-569.
  • 2HEISELE B,HO P,POGGIO T.Face recognition with support vector machines:Global versus component-based approach[C]// ICCV 2001 Proceedings.Eighth IEEE International Conference on Computer Vision.Los Aiamitos:IEEE,2001,2:688-694.
  • 3ABATE A F,NAPPI M,RICCIO D,et al.2D and 3D face recognition a survey[J].Pattern Recognition Letters,2007,28(14):1885-1906.
  • 4NEFIAN A V,HAYES III M H.Hidden markov models for face recognition[C]//1998 IEEE International Conference on Acoustics*Speed and Signal Processing,Washington:IEEE,1998:2721-2724.
  • 5AHRANJANY S S,RAZZAZI F,GHASSEMIAN M H.A very high accuracy handwritten character recognition system for Farsi/Arabic digits using Convolutional Neural Networks[C]//Theories and Applications(BIC-TA),2010 IEEE Fifth International Conference on Bio-Inspired Computing.Beijing:IEEE,2010;1585-1592.
  • 6SYAFEEZA A R,KHALIL-HANI M,LIEW S S,et al.Convolutional neural network for face recognition with pose and Illumination Variation[J].International Journal of Engineering & Technology,2014,6(1):44-57.
  • 7TOSHEV A,SZEGEDY C.Deeppose:Human pose estimation via deep neural networks[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Los Alamitos:IEEE,2014:1653-1660.
  • 8SERMANET P,EIGEN D,ZHANG X,et al.Overfeat integrated recognition,localization and detection using convolutional networks[J].Neural Networks,2003,16(5):555-559.
  • 9LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 10HUANG V S,SHADMEHR R,DIEDRICHSEN J.Active learning:learning a motor skill without a coach[J].Journal of neurophysiology,2008,100(2):879-887.

共引文献639

同被引文献29

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部