期刊文献+

一种基于信道状态信息的室内人员行为检测方法 被引量:3

An Indoor Personnel Behavior Detection Method Based on Channel State Information
在线阅读 下载PDF
导出
摘要 传统室内人员行为检测方法检测准确率较低,稳定性较差。为此,提出一种基于信道状态信息(CSI)的室内人员行为检测方法。采集CSI原始数据包后使用Kalman滤波算法对其进行过滤,运用SVM算法对过滤后的数据作分类处理并建立指纹库。同时,利用PSO算法修正SVM中的参数,然后采用SVM算法处理从真实环境内实时采集到的数据后,将该实时数据与指纹库的数据一一匹配。在此基础上,实现室内人员的行为检测。实验结果表明,相比LIFS、FIMD方法,该方法可以更精细地识别室内人员的动作行为,且稳定性更高。 The traditional indoor personnel behavior detection method has lowaccuracy and poor stability. To solve this problem,an indoor personnel behavior detection method based on Channel State Information(CSI) is proposed. After collecting the CSI raw data package,it uses Kalman filtering algorithm to filter it,and uses the SVM algorithm to classify the filtered data,and then builds the fingerprint database. At the same time,the PSO algorithm is used to modify the parameters of the SVM,then the real time data collected from the real environment is processed by SVM,and the realtime data is matched with the data of the fingerprint library. On this basis,indoor personnel behavior detection is realized.Experimental results show that,compared with LIFS and FIMD method,this method can identify the behavior of indoor personnel more accurately and has higher stability.
作者 党小超 黄亚宁 郝占军 司雄 DANG Xiaochao1,2, HUANG Yaning1, HAO Zhanjun1,2, SI Xiong1(1. College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070, China;2. Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, Chin)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第8期79-85,共7页 Computer Engineering
基金 国家自然科学基金(61762079 61363059 61662070) 甘肃省科技重点研发项目(1604FKCA097 17YF1GA015) 甘肃省科技创新项目(17CX2JA037 17CX2JA039)
关键词 行为检测 信道状态信息 支持向量机 粒子群算法 卡尔曼滤波 behavior detection Channel State Information (CSI) Support Vector Machine (SVM) Particle Swarm Optimization ( PSO ) Kalman filtering
  • 相关文献

参考文献4

二级参考文献35

  • 1李伟章.全球定位系统(GPS)介绍[J].无线电技术与信息,2006(4):4-7. 被引量:2
  • 2孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1083
  • 3Gu Y Y,Lo A,Niemegeers I.A survey of indoor positioning systems for wireless personal networks[J].IEEE Communications Surveys&Tutorials,2009,11(1):13-32.
  • 4Kushki A,Plataniotis K,Venetsanopoulos A.Intelligent dynamic radio tracking in indoor wireless local area networks[J].IEEE Transactions on Mobile Computing,2010,9(3):405-419.
  • 5Bagosi T,Baruch Z.Indoor localization by Wi-Fi[C]//Intelligent Computer Communication and Processing(ICCP),2011:449-452.
  • 6Carlos K F,Inmaculada M J,Alicia G C,et al.Nonparametric model comparison and uncertainty evaluation for signal strength indoor location[J].IEEE Transactions on Mobile Computing,2009,8(9):1250-1264.
  • 7Liu Donghui,Xiong Yongping,Ma Jian.Exploit kalmanfilter to improve fingerprint based indoor localization[C]//International Conference on Computer Science and Network Technology,2011:2290-2293.
  • 8Altintas B,Serif T.Improving RSS-based indoor positioning algorithm via k-means clustering[J].European Wireless,2011,27:681-685.
  • 9Kubota R,Tagashira S,Arakawa Y,et al.Efficient survey database construction using location fingerprinting interpolation[C]//27th International Conference on Advanced Information Networking and Applications,2013:469-476.
  • 10徐凤燕,单杭冠,王宗欣.一种带参数估计的基于接收信号强度的室内定位算法[J].微波学报,2008,24(2):67-72. 被引量:14

共引文献49

同被引文献16

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部