期刊文献+

无刷直流电机自适应控制系统的研究与仿真 被引量:2

Research and Simulation of Adaptive Control System for Brushless DC Motor
在线阅读 下载PDF
导出
摘要 为了提高无刷直流电机控制性能,提出了一种基于改进的全面学习粒子群(CLPSO)算法自整定PID参数的控制方法,实现了无刷直流电机调速系统的自适应控制。该方法利用改进的CLPSO算法全局搜索能力强、收敛速度快及收敛精度高等优点,对无刷直流电机控制系统的PID参数进行寻优。MATLAB/Simulink仿真实验表明,在电机启动和突加负载过程中,该方法控制电机的转速和转矩响应速度快、波动小,比传统PID控制方法具有更好的动静态特性和鲁棒性。 To improve the adaptive control performance of brushless DC motor(BLDC),a new strategy for the coefficient of PID controller tuning based on improved comprehensive learning particle swarm optimizer(CLPSO)was proposed in this paper.The improved CLPSO is effective and precise,which make it suitable for the coefficient of PID controller tuning.Simulation results in MATLAB/Simulink verify this brushless DC motor speed control system is more rapid,stabilized and robust compared with traditional PID controller.
作者 李梦凡 王云 卫丽超 LI Meng-fan;WANG Yun;WEI Li-chao(Xi'an Microelectronics Technology Institute,Xi'an 710054,China)
出处 《机械工程与自动化》 2018年第5期91-93,共3页 Mechanical Engineering & Automation
关键词 无刷直流电机 基于改进的全面学习粒子群算法 自适应控制 仿真 brushless DC motor improved comprehensive learning particle swarm optimizer adaptive control simulation
  • 相关文献

参考文献2

二级参考文献21

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:311
  • 2Astrom KJ, Hagglund T. PID controllers: theory, design, and tuning [M]. 2nd ed. New York: Instru-ment Society of America, 1995.
  • 3Altnten A, Ketevanliolu F, Erdoan S. Self-tuning PID control of jacketed batch polystyrene reactor using ge- netic algorithm [J]. Chemical Engineering Journal, 2008, 138(3) : 490-497.
  • 4Zhang J, Zhuang J, Du H. Self-organizing genetic al- gorithrn based tuning of PID controllers. Information Sciences, 2009, 179(7): 1007-1018.
  • 5Bagis A. Tabu search algorithm based PID controller tuning for desired system speeifieations [J]. Journal of the Franklin Institute, 2011, 348(10): 2795-2812.
  • 6史峰,王辉,郁磊.MATIJAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011.
  • 7Jiuli L, Manfeng D. Fuzzy Adaptive PI Control for Near Space Aircraft Electric Propulsion System [ C ]//IEEE International Con- ference on Computer, Mechatronics, Control and Electronic Engineering, 2010, 4:472-475.
  • 8Vishal V, Kumar V, Rana K P S, et al. Comparative Study of Some Optimization Techniques Applied to DC Motor Control[ C] //IEEE International Conference on Advance Computing, 2014:1342-1347.
  • 9Gaing Z L, Lin C H, Tsai M H, et al. Rigorous Design and Optimization of Brush]ess PM Motor Using Response Surface Meth- edology with Quantum-Behaved PSO Operator[ J]. IEEE Trans on Magnetics, 2014, 50( 1 ) : 1-4.
  • 10Wai R J, Lee J D, Chuang K L. Real-Time PID Control Strategy for Maglev Transportation System Via Particle Swarm Optimiza- tion[J]. IEEE Trans on Industrial Electronics, 2011, 58(2) : 629-646.

共引文献18

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部