期刊文献+

边缘修正的多尺度卷积神经网络重建算法 被引量:4

Multi-Scale Convolutional Neural Network Reconstruction Algorithm Based on Edge Correction
原文传递
导出
摘要 目前,基于卷积神经网络的超分辨率重建方法具有参数数量大,时效性偏低,边缘细节信息丢失的缺陷。针对该问题,提出基于边缘修正的多尺度卷积神经网络超分辨率重建算法。首先在训练阶段,利用低频信息的冗余性设置参数共享层,将同一组滤波器应用到不同放大倍数的训练网络中,构建多任务学习框架;然后在重建阶段,从样本训练库中学习可以高分辨率图像边缘修正系数,采用邻域像素差值线性运算将边缘系数与重建的高分辨率图像进行融合,矫正边缘信息的偏差,弥补丢失细节;最后根据随机梯度下降法和反向传播法,利用梯度不断更新权重参数使网络达到最优化。实验结果表明,该算法的重建效果较为显著,边缘锐度较高,消除了模糊和锯齿现象,并且通过参数共享大幅减少参数量,满足实时性的要求。 At present, the super-resolution reconstruction methods based on convolutional neural network have the defects of large amount of parameters, low timeliness and loss of edge detail information. In order to solve these problems, we propose a super-resolution reconstruction algorithm of muhiscale convolution neural network based on edge correction. Firstly, in the training phase, we set the parameter sharing layer by using the redundancy of low frequency information, In other words, the same set of filters applied to different magnification training networks to build the muhi-task learning framework. In the reconstruction phase, the edge correction coefficient of high-resolution image is learned from the sample training library. The neighborhood pixel difference is used to fuse the edge coefficient and the reconstructed high resolution image, and to correct the deviation of the edge information and make up for the missing details. Finally, according to the stochastic gradient descent and back-propagation, we use the gradient to continuously update the weight parameters to make the network reach the maximum optimization. Experimental results show that the proposed algorithm has the significant reconstruction effect, high edge sharpness, elimination of blurring and aliasing, and greatly reduces the amount of parameters through parameter sharing to meet real time requirements.
作者 程德强 蔡迎春 陈亮亮 宋玉龙 Cheng Deqiang;Cai Yingchun;Chen Liangliang;Song Yulong(School of Information and Control Engineering,China Untversity of Mining and Technology,Xuzhou,Jiangsu 221008,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第9期126-134,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(51774281) 江苏省"六大人才高峰"高层次人才培养项目(2015-ZBZZ-009)
关键词 图像处理 超分辨率重建 边缘修正 多尺度 梯度信息 image processing super resolution reconstruction edge correction multi-scale gradient information
  • 相关文献

参考文献4

二级参考文献46

  • 1谭兵,徐青,邢帅,耿则勋.小波超分辨率重建算法及其在SPOT影像中的应用[J].测绘学报,2004,33(3):233-238. 被引量:6
  • 2韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 3H S Hou, H C Andrews. Cubic spline for image interpolation and digital filtering [J]. IEEE Transaction on Signal Pressing, 1978,26(6) :508 - 517.
  • 4S Mallet, Guoshen Yu. Super-Resolution with sparse mixing es- timators [ J]. IEEE Transactions on Image Processing, 2010, 19 ( 11 ) : 2889 - 2900.
  • 5W T Freeman, T R Jones, E C Pasztor. Example-based super- resolution [ J ]. IEEE Computer Graphics and Applications, 2002,22(2) :56 - 65.
  • 6M Elad, D Datsenko. Example-based regularization deployed to super-resolution reconstruction of a single image [ J ]. The Computer Journal, 2007,50(4) : 1 - 16.
  • 7Yang Jian-chao, J Wright, T S Huang, Yi Ma. Image super-res- olution via sparse representation [J]. 1EEE Transaction on Im-age Procesfing,2010,19(ll):2861 - 2873.
  • 8Yang Jian-chao, J Wright, T S Huang, Yi. Ma, Image super- resolution as sparse representation of raw image patches [ A]. Proceedings of the 1F, IEEE Conference on Computer Vision and Pattern Recognition[ C]. Anchorage, AK, 2008.1 - 8.
  • 9R Zeyde, M Elad, M Protter. On single image scale-up using sparse-representations [ A] .Proceedings of the 7th International Conference on Curves and Surfaces [ C ]. Avignon: Avignon, France, 2010.
  • 10M Aharon, M Elad, A Bruckstein, The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse represen- tation [ J 3. IEEE, Transaction on Signal Processing, 2006, 54 (11) :4311 - 4322.

共引文献156

同被引文献38

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部