期刊文献+

主要协同转运蛋白超家族的研究进展 被引量:8

Research Advances in the Major Facilitator Superfamily
在线阅读 下载PDF
导出
摘要 主要协同转运蛋白超家族(Major facilitator superfamily,MFS)是目前已知最大的膜转运蛋白超家族之一,包括100万个测序成员,其长度大都分布在400-600个氨基酸残基之间。根据TCDB数据库显示,MFS已经扩展到95个家族,它们可以促进糖、药物分子、肽、三羧酸循环代谢产物、有机阴离子和无机阴离子等溶质在电化学梯度下进行跨膜运输。目前,对于MFS转运蛋白的晶体结构及转运机制的研究较多,研究发现MFS转运蛋白家族通常具有12个跨膜螺旋单位,并拥有其独特的折叠方式(MFS折叠),蛋白呈现向胞内、胞外开口或闭合的构象,以"摇杆开关"的转运方式进行物质的运输。MFS转运蛋白超家族在动植物中的生理作用较为广泛,在近期,人源MFS转运蛋白的研究更是引发关注,一些MFS转运蛋白家族成员的缺失可导致大脑萎缩和发育迟缓等;还有一些MFS蛋白具有调节细胞酸碱平衡、促进抗癌和消炎药物吸收等作用,关于人源MFS转运蛋白的研究为糖尿病、疲劳综合征、心血管疾病、癌症等人类疾病的防治提供了依据。主要介绍MFS转运蛋白超家族的发展,阐述其晶体结构、转运机制及生理作用,并在此基础上进行展望,以期为MFS的进一步深入研究及探讨提供理论依据。 As one of the largest superfamilies of membrane transport proteins, Major Facilitator Superfamily ( MFS ) included more than 1 million sequenced members. MFS, with a majority of members contained 400-600 amino acid residues, has been expanded to 95 families according to Transporter Classification Database ( TCDB ) . MFS promoted the transport of solutes such as sugars, drug molecules, peptides, metabolites of tricarboxylic acid cycle, organic anions, and inorganic anions across the cell membrane in response to electrochemical gradient. Recently, there have been more and more studies focusing on the crystal structure and transport mechanism of MFS. Usually, the MFS were reported to have 12 transmembrane helical segments and special fold method called MFS fold. Like a "rocker switch", MFS proteins exhibited intracellular and extracellular open or closed conformations to transport the solute. In addition, there were many studies focusing on the physiological functions of MFS in animals and plants. At present, the MFS transporter of human was increasingly concerned as their distinctive physiological functions. For example, the deletion of some members of MFS might lead to brain shrinkage and developmental delay. Besides, some MFS proteins were also reported to regulate acid-base balance of cells, promote the absorption of anti-cancer and anti-inflammatory drugs. Overall, the study of human MFS transporters provided the basis for the occurrence and prevention of many diseases such as diabetes, fatigue syndrome, cardiovascular disease, and cancer. In this study, to provide theory basis for further study of MFS, the development of MFS, its crystal structure, transport mechanism and physiological function were reviewed, and on such a basis, the development trend of MFS was also prospected.
作者 李纯 孙春玉 陈静 林彦萍 王义 张美萍 LI Chun;SUN Chun-yu;CHEN Jing;LIN Yan-ping;WANG Yi;ZHANG Mei-ping(Jilin Agricultural University,College of Life Sciences,Changehun 130118;Research Center For Ginseng Genetic Resources Development and Utilization,Changehun 130118)
出处 《生物技术通报》 CAS CSCD 北大核心 2018年第8期43-49,共7页 Biotechnology Bulletin
基金 国家"863计划"项目(2013AA102604) 吉林省发改委-吉林省农产业创新专项资金项目(2016C04)
关键词 MFS 结构 转运 生理作用 MFS structure transport physiological function
  • 相关文献

参考文献3

二级参考文献105

  • 1Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants : from soil to cell[ J]. Plant Physiol. , 1998,116:447 - 453.
  • 2Muchhal U S, Pardo J M, Raghathama K G. Phosphate trans- porters from the higher plant Arabidopsis thaliana [ J ]. Proc. Natl. Acad. Sci. USA,1996,93:10519 - 10523.
  • 3Gilroy S, Jones D L. Through form to function : root hair devel- opment and nutrient uptake [ J ]. Trends Plant Sci. , 2000,5 : 56 - 60.
  • 4Secco D, Baumann A, Poirier Y. Characterization of the rice PHO1 gene family reveals a key role for OsPH01; 2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons[ J]. Plant Physiol. , 2010,152:1693 - 1704.
  • 5Delhaize E, Randall P J. Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana [ J ]. Plant Physiol. , 1995, 107:207 -213.
  • 6Bun-ya M, Nishimura M, Harashima S, et al.. The PH084 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter [ J]. Mol. Cell Biol. , 1991, 11:3229 - 3238.
  • 7Harrison M J, van Buuren M L. A phosphate transporter from the mycorrhizal fungus Glomus versifyorme [ J ]. Nature, 1995, 378:626 - 629.
  • 8Liu F, Wang Z, Ren H, et al.. OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice [ J]. Plant J., 2010, 62:508 - 517.
  • 9Ruiz-Pav n L, Karlsson P M, Carlsson J, et al.. Functionally important amino acids in the Arabidopsis thylakoid phosphate transporter: homology modeling and site-directed mutagenesis [J]. Biochemistry ,2010,49:6430 - 6439.
  • 10Yadav V, Kumar M, Deep D K, et al.. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant [ J ]. J. Biol. Chem., 2010,285:26532-26544.

共引文献46

同被引文献28

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部