期刊文献+

由粗到细的点云配准算法 被引量:9

Point cloud registration algorithm from coarse to fine
在线阅读 下载PDF
导出
摘要 针对点云配准算法中的收敛速度以及收敛区间与配准精度之间的矛盾,提出一种由粗到细的点云配准算法。粗配准采用一种变尺度点云配准算法,解决收敛区间与配准精度之间的矛盾;细配准采用一种改进的迭代最近点(ICP)算法,通过设置旋转角约束和动态迭代系数,解决由旋转角变化过大引起的配准效果不佳的问题,并可大幅提高算法的迭代收敛速度。实验结果表明:提出的由粗到细的点云配准算法具有较高的配准精度和速度,是一种有效的点云配准算法。 Aiming at conflict between convergence rate,convergence interval and registration precision of point cloud registration algorithm,a point cloud registration algorithm from coarse to fine is proposed. In coarse registration,a variable scale point cloud registration algorithm is used to solve the conflict between convergence interval and registration precision. In fine registration process,an improved iterative closest point( ICP) algorithm is used by setting rotation angle constraint and dynamic iterative coefficient in order to solve bad registration effect brought by over large changes of rotation angles and increase the iterative convergence rate of the algorithm greatly. The experimental results show that the point clound registration algorithm from coarse to fine has higher registration precision and rate,it is an effective point cloud registration algorithm.
作者 赵夫群 ZHAO Fu-qun(School of Education Science,Xianyang Normal University,Xianyang 712000,China;School of Information Science and Technology,Northwest University,Xi'an 710127,China)
出处 《传感器与微系统》 CSCD 2018年第10期143-146,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61373117) 陕西省社科界重大理论与现实问题研究项目(2017C054)
关键词 点云配准 迭代最近点 变尺度 旋转角约束 动态迭代系数 point cloud registration iterative closest point (ICP) variable scale rotation angle constraint dynamic iterative coefficient
  • 相关文献

参考文献5

二级参考文献50

  • 1程云勇,张定华,卜昆,张顺利.涡轮叶片形状检测中的模型配准控制点集选取[J].机械工程学报,2009,45(11):240-246. 被引量:16
  • 2罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 3张学昌,习俊通,严隽琪.基于扩展高斯球的点云数据与CAD模型配准[J].机械工程学报,2007,43(6):142-148. 被引量:5
  • 4刘宇,熊有伦.基于法矢的点云拼合方法[J].机械工程学报,2007,43(8):7-11. 被引量:12
  • 5SALVI J, MATABOSCH C, FOFI D, et al. A review of recent range image registration methods with accuracy evaluation[J]. Image and Vision Computing, 2007, 25(5): 578-596.
  • 6BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 7FITSGIBBON A W. Robust registration of 2D and 3D point sets[J]. Image and Vision Computing, 2001, 21(13): 1145-1153.
  • 8GRANGER S, PENNEC X. Multi-scale EM-ICP. A fast iand robust approach for surface registration[M/OL]. London: Springer, 2002: 418-432.
  • 9HASLER D, SV1AZ L, SI]SSTRUNK S, et al. Outlier modeling in image matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(3): 301-315.
  • 10YING Zhengrong, CASTANON D. Partially occluded object recognition using statistical models[J]. International Journal of Computer Vision, 2002, 49(1): 57-78.

共引文献65

同被引文献69

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部