期刊文献+

Banach空间中一类周期非线性受控系统最优控制的存在性(英文)

On Existence of Optimal Control Governed bya Class of Periodic Nonlinear EvolutionSystems on Banach Spaces
在线阅读 下载PDF
导出
摘要 研究一类强非线性发展方程的周期解及相应的最优控制问题的存在性.首先,证明了Banach空间中一类包含非线性单调算子和非线性非单调扰动的强非线性发展方程周期解的存在性;其次,给出了保证相应的Lagrange最优控制的充分条件;最后,举例说明理论结果在拟线性抛物方程周期问题及相应的最优控制问题中的应用. In this paper, we prove an existence of periodic solutions of strongly nonlinear evolution equation containing a nonlinear monotone operator and a nonlinear nonmonotone perturbation in Banach spaces. Existence of Lagrange optimal control problem governed by periodic systems on Banach spaces is also presented. For illustration, an example of a quasi-linear parabolic differential equation and corresponding to optimal control problem is also discussed.
出处 《应用泛函分析学报》 CSCD 2002年第2期124-136,共13页 Acta Analysis Functionalis Applicata
基金 Supported by Guizhou Provincial President Grant(2001055)
关键词 BANACH空间 周期非线性受控系统 最优控制 存在性 非线性发展方程 周期解 单调算子 nonlinear evolution equation periodic solution monotone operator optimal control quasi-linear parabolic differential equation
  • 相关文献

参考文献14

  • 1Becker R I. Periodic solutions ofsemilinear equations of evolution of compact type[J]. J Math Anal Appl, 1981, 82: 33-48.
  • 2Browder F. Existence of periodic solutions for nonlinear equations of evolution[J].Proc Nat Acad Sci U.S.A., 1965, 53: 1110-1113.
  • 3Priiss J. Periodic solutions of semilinear evolution equations[J]. Nonlinear Anal,1979, 3: 601-612.
  • 4Xiang X, Ahmed N U. Existence of periodic solutions of semilinear evolutionequations with time lags[J]. Nonlinear Anal, 1992, 18: 1063-1070.
  • 5Zeidler E. Nonlinear Functional Analysis and Its Applications Ⅱ [M].Springer-Verlag, New York,1990.
  • 6Avgerinos P. On periodic solutions of multivalued nonlinear evolution equations[J].J Math Anal Appl,1996, 198: 643-656.
  • 7Ahmed N U, Teo K L. Optiaml Control of Distributed Parameter Systems [M].North-Holland,Amsterdam, 1981.
  • 8Papageorgiou N S. Optimal control of nonlinear evolution equations with nonmonotonenonlinearities[J].Journal of optimization theory and applications, 1993, 77: 643-660.
  • 9Fattorini H O. Infinite Dimensional Optimization and Control Theory[M]. CambridgeUniversity Press,1999.
  • 10Li X, Yong J. Optimal Control Theory for Infinite Dimensional Systems [M ].Birkhauser, Boston,1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部