期刊文献+

具有概率分布时滞的神经网络稳定性新判据 被引量:1

New stability criteria for neural networks with probabilistic time-varying delay
在线阅读 下载PDF
导出
摘要 基于概率理论和Lyapunov稳定性理论,研究一类具有概率分布时滞神经网络稳定性问题。通过构造合适的Lyapunov-Krasovskii(LK)泛函,运用Wirtinger不等式和倒凸技术来估计LK泛函导数的上界,得到了确保该类时滞神经网络在均方意义下的全局渐近稳定的新判据。该判据以LMIs形式表出,它不但依赖于时滞的上界,而且依赖于时滞的概率分布。给出两个数值例子,仿真表明所提方法的有效性和较弱的保守性。 Based on probability theory and the Lyapunov stability theory, the stability problem for a class of neural networkswith probabilistic time-varying delay is studied. By constructing a proper Lyapunov-Krasovskii functional(KLF), and usingWirtinger-based inequality and the reciprocal convex technique to estimate the upper of the time derivative of the KLF, anovel sufficient criterion is derived to guarantee neural networks with time-varying delay to be asymptotically stable inthe mean-square sense. The criterion formulated in terms of LMIs(Linear Matrix Inequalities)is dependent not only onthe upper bound of the time delay but also on time delay’s probability distribution. Finally, two numerical examples aregiven to illustrate that the approach proposed in this paper is more effective and less conservative than some existing ones.
作者 张芬 张艳邦 ZHANG Fen;ZHANG Yanbang(College of Mathematics and Information Science, Xianyang Normal University, Xianyang, Shaanxi 712000, China;School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第16期12-16,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61501388 No.11501482) 陕西省自然科学基金(No.2013JM1014) 陕西省教育厅科学研究基金(No.14JK1797) 咸阳师范学院高层次人才引进计划项目(No.14XSYK005) 咸阳师范学院科研基金资助项目(No.13XSYK009)
关键词 时滞神经网络 概率时滞 渐近稳定 倒凸技术 线性矩阵不等式 delayed neural networks probabilistic time-varying delay asymptotical stability reciprocal convex technique Linear Matrix Inequalities(LMIs)
  • 相关文献

参考文献2

二级参考文献47

  • 1Zhang HG,Wang ZS.Global asymptotic stability of delayed cellular neural networks.IEEE Trans Neural Network 2007;18(3):947-50.
  • 2He Y,Liu GP,Rees D,et al.Stability analysis for neural networks with time-varying interval delay.IEEE Trans Neural Network 2007; 18(6):1850-4.
  • 3Zhang HG,Wang ZS,Liu DR.Robust exponential stability of recurrent neural networks with multiple time-varying delays.IEEE Trans Circuits Syst Ⅱ Exp Briefs 2007;54(8):730-4.
  • 4Yue D,Zhang YJ,Tian EG,et al.Delay-distribution-dependent exponential stability criteria for discrete-time recurrent neural networks with stochastic delay.IEEE Trans Neural Network 2008;19(7):1299-306.
  • 5Huang H,Feng G.Delay-dependent stability for uncertain stochastic neural networks with time-varying delay.Physica A 2007;381(15):93-103.
  • 6Huang H,Feng G.Corrigendum to:"Delay-dependent stability for uncertain stochastic neural networks with time-varying delay"[Physica A 381 (2007) 93-103].Physica A 2008,387(5):1431-2.
  • 7Chen WH,Lu XM.Mean square exponential stability of uncertain stochastic delayed neural networks.Phys Lett A 2008;372(7):1061-9.
  • 8Li HY,Chen B,Zhou Q,et al.Robust exponential stability for uncertain stochastic neural networks with discrete and distributed time-varying delays.Phys Lett A 2008,372(19):3385-94.
  • 9Zhang JH,Shi P,Qiu JQ.Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays.Nonlinear Anal 2007;8:1349-57.
  • 10Zhang YJ,Yue D,Tian EG.Robust delay-distribution-dependent stability of discrete-time stochastic neural networks with time-varying delay.Neurocomputing 2009;72(4-6):1265-73.

共引文献1

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部