期刊文献+

针对双曲守恒律方程求解方法的研究

在线阅读 下载PDF
导出
摘要 计算流体力学是基于数值方法对满足定解条件的流体力学方程进行的离散化处理,对数值解进行分析和处理,通过数值模拟的过程得到流体的运动规律,进而解决流体运动中遇到的实际问题。流体运动大多数都具有非线性守恒律方程形式,因此,能高效、精确地对双曲守恒律方程进行求解成为流体力学领域的重要研究课题之一。本文从物理概念出发,通过介绍几种主要的求解方法,加深对双曲守恒律方程求解方法的理解和运用。
作者 吕梦迪 陈芳
机构地区 长安大学理学院
出处 《科教导刊(电子版)》 2017年第22期240-240,共1页 The Guide of Science & Education (Electronic Edition)
  • 相关文献

参考文献1

二级参考文献16

  • 1Lax P D.Weak solutions of non-linear hyperbolic equations and their numerical computations[J].Communication on Pure and Applied Mathematics,1954,7(1):159-193.
  • 2Lax P D.Hyperbolic systems of conservation laws and the mathematical theory of shock waves[C]//SIAM Regional Conferences Lectures in Applied Mathematics.Philadelphia:Society for Industrial and Applied Mathematics,1973:1-48.
  • 3Tadmor E.The numerical viscosity of entropy stable schemes for systems of conservation laws:Ⅰ[J].Mathematics of Computation,1987,49(179):91-103.
  • 4Tadmor E,Zhong W.Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity[J].Journal of Hyperbolic Differential Equation, 2006,3(3):529-559.
  • 5Tadmor E,Zhong W.Energy preserving and stable approximations for the two-dimensional shallow water equations[M]//Munthe-Kass H,Owren B.Mathematics and Computation:a Contemporary View.Alesund,Norway:Springer,2008:67-94.
  • 6Roe P L.Entropy conservative schemes for Euler equations[R].Lyon:Eleventh International Conference on Hyperbolic Problems Theory,Numerics,Applications,2006.
  • 7Yee H C.Construction of explicit and implicit symmetric TVD schemes and their applications[J].Chinese Journal of Computational Physics,1987,68(1):151-179.
  • 8Von Neumann J,Richtmyer R.A method for the numerical calculation of hydrodynamic shocks[J].Journal of Applied Physics,1950,21(3):232-237.
  • 9Guermond J L,Pasquetti R.Entropy-based nonlinear viscosity for Fourier approximations of conservation laws[J].Comptes Rendus Mathematique,2008,346(13):801-806.
  • 10Guermond J L,Pasquetti R,Popov B.Entropy viscosity method for nonlinear conservation laws[J].Journal of Computational Physics,2011,230(11):4248-4267.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部