期刊文献+

基于改进蚁群算法的移动机器人全局路径规划方法研究 被引量:12

Research on Mobile Robot Global Path Planning Based on Improved Ant Colony Algorithm
在线阅读 下载PDF
导出
摘要 针对基本蚁群算法在移动机器人全局路径规划中收敛速度慢,易陷入局部最优解的问题,提出一种改进的蚁群算法。将A*算法的根据目标点自适应调整启发函数的思想应用于蚁群算法中,增加目标点对启发函数的影响;改进状态选择策略,增加解的多样性;混合使用多种信息素分配机制,提高算法的收敛速度。通过布置相同的路径搜索条件,在MATLAB语言环境下进行仿真分析,验证了改进的算法是可行有效的。 An improved ant colony algorithm is proposed in view of the shortcomings of slow rate of convergence of the traditional colony algorithm in the mobile robot global path planning and that it is easy to fall into the local optimal solution.The idea adjusting the self-adaptive heuristic function according to the target point in A*algorithm is applied to the ant colony algorithm which is used to construct the heuristic function.The state selection policy is improved to increase the diversity of the solution.The mixed pheromones distribution mechanism is used to improve the convergence speed of the algorithm.The simulation experiments of the mobile robot global path planning based on the traditional ant algorithms and improved ant algorithms are implemented under the same experimental environment.Experimental results demonstrate the effectiveness and superiority of the improved algorithm.
作者 杨萍 赵珍 郑海霞 YANG Ping;ZHAO Zhen;ZEHNG Haixia(School of Mechanical and Electrical Engineering, Lanzhou University Of Technology Lanzhou 730050, China)
出处 《机械制造与自动化》 2017年第6期155-157,192,共4页 Machine Building & Automation
关键词 移动机器人 路径规划 蚁群算法 自适应 改进算法 mobile robot path planning ant colony algorithm self-adaptive improved method
  • 相关文献

参考文献5

二级参考文献76

  • 1朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:124
  • 2孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1055. 被引量:79
  • 3蔡良伟,李霞,张基宏.用带蚁群搜索的多种群遗传算法求解作业车间调度问题[J].信息与控制,2005,34(5):553-556. 被引量:11
  • 4余有明,刘玉树,阎光伟.遗传算法的编码理论与应用[J].计算机工程与应用,2006,42(3):86-89. 被引量:59
  • 5RSiegwart,RNourbakhsh著.李仁厚译.Introduction to Autonomous Mobile Robots.自主移动机器人导论[M].西安:西安交通大学出版社,2006.
  • 6M Gemeinder, M Gerke. GA - based Path Planning for Mobile Robot Systems Employing an Active Search Algorithm [ J ]. Applied Soft Computing, 2003,3:149 - 158.
  • 7R Glasius, R Komoda, S Gielen. Neutral Network Dynamics for Path Planning and Obstacle Avoidance [ J]. Neutral Network, 1995,8( 1 ) : 125 - 133.
  • 8Derek J Bennet, Colin R McInnes. Distributed control of multirobot systems using bifurcating potential fields[J].Robotics and Autonomous Systems, 2010,58 (3) : 256 - 264.
  • 9Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agent[ J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996,26( 1 ) :29 - 41.
  • 10Lim Kwee Kim, Ong Yew-Soon,Lim Meng Hiot,et al.Hybrid ant colony algorithms for path planning in sparse graphs E J]. Soft Computing, 2008,12(10) :981 - 994.

共引文献410

同被引文献104

引证文献12

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部