期刊文献+

Improved PSO for integrating dynamic cell formation and layout problems

改进粒子群算法集成解决动态单元构建与布局问题(英文)
在线阅读 下载PDF
导出
摘要 To decrease the impact of shorter product life cycles,dynamic cell formation problems(CFPs)and cell layout problems(CLPs)were simultaneously optimized.First,CFPs and CLPs were formally described.Due to the changes of product demands and the lim it of machine capacity,the existing layout needed to be rearranged to a high degree.Secondly,a mathematical model was established for the objective function of minimizing the total costs.Thirdly,a novel dynamic multi-swarm particle swarm optimization(DMS-PSO)algorithm based on the communication learning strategy(CLS)was developed.Toavoid falling into local optimum and slow convergence,each swarm shared their optimal locations before regrouping.Finally,simulation experiments were conducted under different conditions.Numerical results indicate that the proposed algorithm has better stability and it converges faster than other existing algorithms. 为了降低产品生命周期缩短对生产系统的影响,对动态单元构建与布局问题同时进行了优化.首先介绍了单元构建与布局问题,考虑到不同阶段的产品需求变化及机器产能限制,适当地将单元进行重新布置.然后,以最小化物料搬运费用为目标函数,建立了数学规划模型.其次,提出了基于沟通学习策略的动态多种群粒子群算法,使各种群粒子重组之前以规定策略进行位置共享,避免陷入局部最优和收敛较慢的困境.最后,在不同条件下进行了仿真对比实验,结果表明,所提出的算法具有更好的收敛稳定性以及更快的收敛速度.
作者 Zhou Binghai Lu Yubin 周炳海;陆裕斌(同济大学机械与能源工程学院,上海201804)
出处 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期409-415,共7页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.71471135)
关键词 dynamic cellular manufacturing system cell formation and layout communication learning strategy dynamic multi-swam particle swam optimization algorithm 动态单元制造系统 单元构建与布局 沟通学习策略 动态多种群粒子群优化算法
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部