摘要
In the paper, the strong convergence properties for two different weighted sums of negatively orthant dependent(NOD) random variables are investigated. Let {X, n ≥ 1}be a sequence of NOD random variables. The results obtained in the paper generalize the corresponding ones for i.i.d. random variables and identically distributed NA random variables to the case of NOD random variables, which are stochastically dominated by a random variable X. As a byproduct, the Marcinkiewicz-Zygmund type strong law of large numbers for NOD random variables is also obtained.
In the paper, the strong convergence properties for two different weighted sums of negatively orthant dependent(NOD) random variables are investigated. Let {X_n, n ≥ 1}be a sequence of NOD random variables. The results obtained in the paper generalize the corresponding ones for i.i.d. random variables and identically distributed NA random variables to the case of NOD random variables, which are stochastically dominated by a random variable X. As a byproduct, the Marcinkiewicz-Zygmund type strong law of large numbers for NOD random variables is also obtained.
基金
Supported by the National Natural Science Foundation of China(11671012,11501004,11501005)
the Natural Science Foundation of Anhui Province(1508085J06)
the Key Projects for Academic Talent of Anhui Province(gxbj ZD2016005)
the Quality Engineering Project of Anhui Province(2016jyxm0047)
the Graduate Academic Innovation Research Project of Anhui University(yfc100004)