期刊文献+

On the strong convergence properties for weighted sums of negatively orthant dependent random variables 被引量:2

On the strong convergence properties for weighted sums of negatively orthant dependent random variables
在线阅读 下载PDF
导出
摘要 In the paper, the strong convergence properties for two different weighted sums of negatively orthant dependent(NOD) random variables are investigated. Let {X, n ≥ 1}be a sequence of NOD random variables. The results obtained in the paper generalize the corresponding ones for i.i.d. random variables and identically distributed NA random variables to the case of NOD random variables, which are stochastically dominated by a random variable X. As a byproduct, the Marcinkiewicz-Zygmund type strong law of large numbers for NOD random variables is also obtained. In the paper, the strong convergence properties for two different weighted sums of negatively orthant dependent(NOD) random variables are investigated. Let {X_n, n ≥ 1}be a sequence of NOD random variables. The results obtained in the paper generalize the corresponding ones for i.i.d. random variables and identically distributed NA random variables to the case of NOD random variables, which are stochastically dominated by a random variable X. As a byproduct, the Marcinkiewicz-Zygmund type strong law of large numbers for NOD random variables is also obtained.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2018年第1期35-47,共13页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China(11671012,11501004,11501005) the Natural Science Foundation of Anhui Province(1508085J06) the Key Projects for Academic Talent of Anhui Province(gxbj ZD2016005) the Quality Engineering Project of Anhui Province(2016jyxm0047) the Graduate Academic Innovation Research Project of Anhui University(yfc100004)
关键词 strong convergence negatively orthant dependent random variables stochastic domination strong convergence negatively orthant dependent random variables stochastic domination
  • 相关文献

同被引文献3

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部