期刊文献+

基于纵横交叉算法优化BP神经网络的风机齿轮箱故障诊断方法 被引量:5

A Fault Diagnosis Method of Wind Turbine Gearbox Based on BP Neural Network Optimized by Crisscross Optimization Algorithm
在线阅读 下载PDF
导出
摘要 风电机组齿轮箱的运行工况比较复杂,容易发生故障.针对常规BP(Back Propagation)神经网络故障诊断容易陷入局部最优的问题,提出一种基于纵横交叉算法(Crisscross Optimization Algorithm,CSO)优化BP神经网络的风电齿轮箱故障诊断新方法.考虑到风电齿轮箱振动信号的波动性和非线性,首先从信号中提取故障特征参数,建立带评价因子的误差分析模型,然后通过纵横交叉算法优化BP的权值和阈值对神经网络进行训练,最后用训练好的神经网络对样本进行测试.经实验仿真并与其他方法的对比,验证了本文方法用于风电机组故障诊断有效性及优越性. Wind turbine gearbox has high failure rate in its complex operation.In order to overcome the drawbacks of the conventional BP(Back Propagation)neural network which is easy to trap into local optimal,a new fault diagnosis model of turbine gearbox is presented based on BP neural network optimized by crisscross optimization(CSO)algorithm.Considering the instability and complexity of vibration signal of the wind turbine gearbox.The fault feature for gearbox is first extracted and a new error analysis model is established with assessment factors,CSO is then used to optimize the weights and bias of BP neural network,and finally the trained neural network is used to test the samples.The simulation and comparison with other methods show that the proposed method is effective and efficient in fault diagnosis of wind turbines.
作者 马留洋 孟安波 葛佳菲 Ma Liu-yang;Meng An-bo;Ge Jia-fei(School of Automation, Guangdong University of Technology, Guangzhou 510006, China)
出处 《广东工业大学学报》 CAS 2018年第2期57-62,共6页 Journal of Guangdong University of Technology
基金 广东省科技计划项目(2016A010104016) 广东电网公司科技项目(GDKJQQ20152066)
关键词 风电机组 齿轮箱 纵横交叉算法 BP神经网络 故障诊断 wind turbine gearbox crisscross optimization algorithm BP neural network fault diagnosis
  • 相关文献

参考文献14

二级参考文献150

共引文献712

同被引文献60

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部