期刊文献+

用于SLAM算法的蚂蚁聚类概率假设密度滤波器

Ant Clustering PHD Filter for SLAM Algorithm
在线阅读 下载PDF
导出
摘要 针对传统的概率假设密度SLAM(PHD-SLAM)算法因粒子退化和耗尽导致估计精度低的问题,提出一种基于蚂蚁聚类的概率假设密度SLAM(ant-PHD-SLAM)算法。其主要的特点:用ant-PHD滤波器实现对地图特征状态和数目的估计,用移动蚂蚁估计器完成对机器人位姿的后验估计。与传统SLAM算法相比,新提出的SLAM算法用人工蚂蚁代替简单的粒子去实现对目标的估计,得益于蚂蚁强大的搜索机制,新算法的估计精度得到明显提高。通过仿真实验,将所提出的算法与传统PHD-SLAM算法进行比较,结果表明所提出算法有效提高了机器人定位估计精度和构图精度。 For the traditional PHD-SLAM algorithm has low estimation accuracy due to particle degradation and depletion,a novel SLAM algorithm based on ant clustering and probabilistic hypothesis density is proposed in this paper.The main contributions is using an ant-PHD filter to jointly estimate the locations and number of features,moreover,a moving ant estimator is developed for estimating maneuvering vehicle trajectory.In contrast to the traditional SLAM algorithm,the novel ant-PHD-SLAM algorithm uses artificial ants instead of simple particles to search the specific target.Benefit from ant powerful search mechanism,the estimation accuracy of the new algorithm has been significantly improved.
作者 蒋冬梅
出处 《工业控制计算机》 2018年第3期67-69,共3页 Industrial Control Computer
关键词 移动机器人 SLAM 概率假设密度滤波 蚁群优化算法 mobile robot simultaneous localization and mapping probability hypothesis density filter ant colony optimization
  • 相关文献

参考文献2

二级参考文献30

  • 1Dissanayake M G, Newman P,Clark S, to the simultaneous localization and map building (SLAM) problem [J]. IEEE Transaction on Robotics and Automation, 2001,17 (2) : 229- 241.
  • 2Singer R A, See R G. A new filter for optimal tracking in dense multitarget environments[C]///Proceedings of the Ninth Aileron Conference on Circuit and System Theory,1971:201-211.
  • 3Y-Bar-Shalom. Extension of the probabilistic data asso- ciation filter to multitar environment[C]//Proceedings Fifth Symposium on Nonlinear Estimation. 1974:16-21.
  • 4Y-Bar-Shalom, Fortmann T E, Schefie M. Joint proba- bilistic data association for multiple targets in clutter[C] ///Proceedings 1980 Conference Information Sciences and Systems, Princeton University, March 1980.
  • 5Reid D B. An algorithm for tracking multiple targets[J]. IEEE Transaction on Automatic Control, 1979,24 (10) :843-854.
  • 6Mullan J, Vo B N, Martin D. Rao-Blackwellised PHD SLAM[C]// Proceedings of the International Confer- ence on Robotics and Automation, Anchorage, Alaska, 2010..5410-5416.
  • 7Arturo G, Oscar R, Monica B,et al. Dealing with data association in visual SLAM[EB/OL]. http: //www. intechopen, corn/books/computer_vision/dealing_with_ data_association_in_visual_slam, [2008-11-1].
  • 8Montemerlo M, Thrun S,Koller D,et al. FastSLAM2. 0: an improved particle filtering algorithm for simulta- neous localization and mapping that provably converges [C] ,//Proceedings of the International Conference on Artificial Intelligence, California, CA, USA, 200a.. 1151-1156.
  • 9Goodman I R, Mahler R P, Nguyen H T. Mathematics of data fusion[M]. Kluwer Academic Publishers, Dor- drecht, 1997.
  • 10Mahler R. Multi-target hayes filtering via first-order multi-target moments[J]. IEEE Transactions on AES, 2003,39(4) : 1152-1178.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部