期刊文献+

基于局部SVD++的服装推荐算法研究 被引量:1

Research on Clothing Recommendation Algorithm Based on Local SVD
在线阅读 下载PDF
导出
摘要 随着社会的飞速发展,生活节奏不断加快,消费者逐渐开始注重购买服装的效率,对个性化服装的需求也在不断增加。所以,个性化服装推荐系统对于消费者和商家来说都尤为重要。本文利用皮尔森相关系数和矩阵分解的有关理论,在K-NN(k-Nearest Neighbor)算法和SVD(Singular Value Decomposition)算法的基础上构建基于局部SVD++的服装推荐算法。 With the rapid development of society,the pace of life has been accelerating,consumers gradually began to pay attention to the efficiency of the purchase of clothing,and the demand for personalized clothing is also increasing.As a result,personalized clothing recommendation system for consumers and businesses are particularly important.Based on the K-NN(k-Nearest Neighbor)algorithm and the SVD(Singular Value Decomposition)algorithm,the paper constructs a clothing recommendation algorithm on the basis of local SVD++.
作者 尹定乾 杨佳乐 金英花 YIN Ding-qian;YANG Jia-le;JIN Ying-hua(Jiangnan University School of Science,Wuxi 214122,China)
机构地区 江南大学理学院
出处 《价值工程》 2018年第10期173-176,共4页 Value Engineering
关键词 智能推荐 服装推荐算法 加权矩阵 矩阵分解 协同过滤 intelligent recommendation clothing recommendation algorithm weighting matrix matrix decomposition collaborative filtering
  • 相关文献

参考文献3

二级参考文献86

  • 1黎铭,薛晓冰,周志华.基于多示例学习的中文Web目录页面推荐[J].软件学报,2004,15(9):1328-1335. 被引量:17
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献565

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部