期刊文献+

高温还原GO制备LiFePO_4/石墨烯复合正极材料及表征 被引量:4

Preparation and Characterization of LiFePO_4/Graphene Composite Cathode Materials by High Temperature Reduction GO
在线阅读 下载PDF
导出
摘要 通过对氧化石墨烯(GO)进行微观调控处理得到少层GO。采用喷雾干燥再高温改性的方法制备LiFePO_4/石墨烯锂离子电池复合正极材料;GO还原后即可得到石墨烯,其优良的导电性可以提高LiFePO_4的电子传输能力。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试技术等方法对复合材料的结构、形貌及电化学性能进行表征。石墨烯的复合使材料颗粒间构建空间三维导电网络,提高了电解质/电极材料界面的电荷转移速率,改善了LiFePO_4的电化学性能。电化学测试结果表明,在0.1C时LiFePO_4的放电比容量为155mAh/g,LiFePO_4/石墨烯复合材料的放电比容量为164mAh/g;1C和2C倍率时,LiFePO_4/石墨烯复合材料的放电比容量分别为140,119mAh/g。 Micro layer of GO was obtained by micro adjustment and control.LiFePO4/graphene com-posite cathode materials were synthesized using a spray drying followed by high temperature reduction modification method,to improve conductivity of LiFePO4 with excellent conductivity of graphene.The structure,morphology and electrochemical performance of the composite materials were charac-terized by XRD,FTIR,SEM,TEM and electrochemical measurement technologies.The three-di-mensional conductive network was constructed by graphene composite in material particles,which can improve the charge transfer rate of the interface of electrolyte/electrode materials and the electrochem-ical performance of LiFePO4.The results show that the discharge specific capacity of LiFePO4 without graphene is only 155mAh/g,while the discharge specific capacity of LiFePO4/graphene is 164mAh/g at 0.1C.The discharge specific capacity of LiFePO4/graphene is 140,119mAh/g at 1,2C,respectively.
作者 邓凌峰 覃昱焜 彭辉艳 连晓辉 吴义强 DENG Ling-feng;QIN Yu-kun;PENG Hui-yan;LIAN Xiao-hui;WU Yi-qiang(School of Materials Science and Engineering,Central South University of Forestry and Technology,Changsha 410004,China)
出处 《材料工程》 EI CAS CSCD 北大核心 2018年第2期9-15,共7页 Journal of Materials Engineering
基金 国家自然科学基金重点资助项目(31530009)
关键词 氧化石墨烯 石墨烯 喷雾干燥 导电网络 电化学性能 graphene oxide(GO) graphene spray drying conductive network electrochemical perform
  • 相关文献

参考文献6

二级参考文献133

  • 1NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5296) : 666-669.
  • 2NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two- dimensional gas of massless Dirae fermions in graphene[J]. Na- ture, 2005, 438(7065): 197-200.
  • 3GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Na- ture Materials, 2007, 6(3): 183-191.
  • 4BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3) : 902-907.
  • 5CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 528-527.
  • 6LEE C G, WEI X D, KYSAR J W, et al. Measurement of the e- lastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
  • 7KIM H, MIURA Y, MACOSKO C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivi- ty[J]. ChemMater, 2010, 22(11): 3441-3450.
  • 8WAKABAYASHI K, PIERRE C, DIKIN D A, et al. Polymer- graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization[J]. Macromole- cules, 2008, 41(6): 1905-1908.
  • 9YANG Y, WANG J, ZHANG J, et al. Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles[J]. Lang- muir, 2009, 25(19): 11808-11814.
  • 10KIM H, MACOSKO C W. Processing-property relationships of polycarhonate/graphene composites [J]. Polymer, 2009, 50 (15) : 3797-3809.

共引文献99

同被引文献33

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部