期刊文献+

基于深度卷积神经网络的羽绒图像识别 被引量:8

Down Image Recognition Based on Deep Convolution Neural Networks
在线阅读 下载PDF
导出
摘要 由于图像中羽绒形态及其多样性,传统的图像识别方法难以正确识别羽绒分拣图像中的羽绒类型,其识别精度也难以达到实际生产的要求.为解决上述问题,构造了一种用于羽绒类型识别的深度卷积神经网络,并对其权值初始化方法进行了改进.首先利用视觉显著性模型提取羽绒图像的显著部分,然后将图像的显著部分输入到稀疏自动编码器中进行训练,得到一组符合数据集统计特性的卷积核集合.最后采用Inception及其变种模块实现深度卷积神经网络的构造,通过增加网络深度来提高网络的识别精度.试验结果表明,用所构造的深度卷积神经网络对羽绒图像识别的精度较传统卷积神经网络的提高了2.7%,且改进的权值初始化方法使网络的收敛速度提高了25.5%. Because of the scale and the various shapes of down in the image,it was difficult for traditional image recognition method to correctly recognize the type of down image and got the required recognition accuracy,even for the Traditional Convolutional Neural Network(TCNN).To solve the above problems,a Deep Convolutional Neural Networks(DCNN)for down image recognition was constructed,and a new weight initialization method was proposed.Firstly,the salient regions of down images were cut from the images using the visual saliency model.Then,these salient regions were used to train a sparse autoencoder and get a collection of convolutional filters,which accord with the statistical characteristics of dataset.At last,a DCNN with Inception module and its variants was constructed.To enhance the recognition accuracy,the depth of the network was deepened.The experiment results indicated that the constructed DCNN increased the recognition accuracy by 2.7%compared to TCNN,when recognizing the down in the images.The convergence rate of the proposed DCNN with the new weight initialization method was improved by 25.5%compared to TCNN.
作者 杨文柱 刘晴 王思乐 崔振超 张宁雨 YANG Wenzhu;LIU Qing;WANG Sile;CUI Zhenchao;ZHANG Ningyu(School of Cyber Security and Computer,Hebei University,Baoding 071002,China)
出处 《郑州大学学报(工学版)》 CAS 北大核心 2018年第2期11-17,共7页 Journal of Zhengzhou University(Engineering Science)
基金 国际合作专项基金资助项目(2013DFA11320) 河北省自然科学基金资助项目(F2015201033 F2017201069) "云数融合 科教创新"基金课题(2017A20004)
关键词 深度卷积神经网络 权值初始化 稀疏自编码 视觉显著性 图像识别 deep convolutional neural networks weights initialization sparse autoencoder visual saliency image recognition
  • 相关文献

参考文献3

二级参考文献41

  • 1岳国义,李宝树,赵书涛.智能型指针式仪表识别系统的研究[J].仪器仪表学报,2003,24(z2):430-431. 被引量:52
  • 2王三武,戴亚文.多指针水表自动识别系统[J].仪器仪表学报,2005,26(11):1178-1180. 被引量:18
  • 3陈玉梅,余洪山,贺攀峰.一种分层并行迭代式链码跟踪直线提取算法[J].郑州大学学报(工学版),2006,27(2):94-97. 被引量:4
  • 4Ahonen T, Hadid A, Pietikinen M. Face recognition with local binary patterns[C] //Proc of the 8th European Conference on Computer Vision. Berlin:Springer, 2004:469-481.
  • 5Lowe D G. Object recognition from local scale-invariant features[C] //Proc of the 7th IEEE International Conference on Computer Vision. [S. l.] :IEEE Press, 1999:1150-1157.
  • 6Dalal N, Triggs B. Histograms of oriented gradients for human detection[C] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S. l.] :IEEE Press, 2005:886-893.
  • 7Shen Linlin, Bai Li. A review on Gabor wavelets for face recognition[J] . Pattern Analysis and Applications, 2006, 9(2-3):273-292.
  • 8Tan Xiaoyang, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J] . IEEE Trans on Image Processing, 2010, 19(6):1635-1650.
  • 9Wolf L, Hassner T, Taigman Y. Descriptor based methods in the wild[C] //Proc of Workshop on Faces in Real-Life Images:Detection, Alignment, and Recognition. 2008.
  • 10Guo Zhenhua, Zhang Lei, Zhang D. A completed modeling of local binary pattern operator for texture classification[J] . IEEE Trans on Image Processing, 2010, 19(6):1657-1663.

共引文献25

同被引文献51

引证文献8

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部