期刊文献+

基于混合DBNN-BLSTM模型的大词汇量连续语音识别 被引量:9

Large vocabulary continuous speech recognition based on deep belief neural networks and bidirectional long-short term memory hybrid
在线阅读 下载PDF
导出
摘要 深度置信神经网络(DBNN)模型和双向长短时记忆神经网络模型(BLSTM)在单独进行特征提取时识别率不理想,长短时记忆单元(LSTM)与BLSTM模型可以更好解析语音数据特征.因此将DBNN模型和BLSTM模型相结合,提出一种大词汇量连续语音识别(LVCSR)的声学模型建立方法,并在Keras深度学习框架下进行实验.实验结果表明,使用改进的DBNNBLSTM模型进行大词汇量连续语音识别,识别精度有所提高,比BLSTM模型的语音识别率提高5%. The recognition rate is not ideal when the feature extraction is performed on the deep confidence neural network(DBNN)model and the bidirectional long-short term memory(BLSTM),the long-short term memory(LSTM)and BLSTM can better analyze the characteristics of speech data.By combining the DBNN model with BLSTM,a new acoustic modeling method for large vocabulary continuous speech recognition(LVCSR)is proposed and experimentally studied based on Keras deep learning framework.The experimental results show that the improved DBNN-BLSTM model has a high recognition accuracy,and the speech recognition rate is 5%higher than that of BLSTM.
作者 李云红 王成 王延年 LI Yunhong;WANG Cheng;WANG Yannian(School of Electronics and Information,Xi′an Polytechnic University,Xi′an 710048,China)
出处 《纺织高校基础科学学报》 CAS 2018年第1期103-107,114,共6页 Basic Sciences Journal of Textile Universities
基金 陕西省科技工业攻关项目(2016GY-047) 陕西省科技厅自然科学基础研究重点项目(2016JZ026)
关键词 大词汇量 语音识别 深度置信神经网络 双向长短时记忆模型 large vocabulary speech recognition DBNN BLSTM
  • 相关文献

参考文献9

二级参考文献96

  • 1陈国良,韩文廷.人工神经网络理论研究进展[J].电子学报,1996,24(2):70-75. 被引量:20
  • 2孙宁,孙劲光,孙宇.基于神经网络的语音识别技术研究[J].计算机与数字工程,2006,34(3):58-61. 被引量:9
  • 3钱跃良,林守勋,刘群,刘宏.2005年度863计划中文信息处理与智能人机接口技术评测回顾[J].中文信息学报,2006,20(B03):1-6. 被引量:4
  • 4申红,吕宝粮,内山将夫,井佐原均.文本分类的特征提取方法比较与改进[J].计算机仿真,2006,23(3):222-224. 被引量:28
  • 5苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:391
  • 6Lim D C Y,Lane I.Language identification for speech-to-speech translation.In:Proceedings of the10th Annual Con-ference of the International Speech Communication Associ-ation.Brighton,UK:ISCA,2009.204-207.
  • 7Motlicek P.Automatic out-of-language detection based on confidence measures derived from LVCSR word and phone lattices.In:Proceedings of the10th Annual Conference of the International Speech Communication Association.Brighton,UK:ISCA,2009.1215-1218.
  • 8Motlicek P,Valente F.Application of out-of-language detec-tion to spoken term detection.In:Proceedings of the IEEEInternational Conference on Acoustics,Speech and Signal Processing.Dallas,USA:IEEE,2010.5098-5101.
  • 9Motlicek P,Valente F,Garner P N.English spoken term detection in multilingual recordings.In:Proceedings of the11th Annual Conference of the International Speech Communication Association.Chiba,Japan:ISCA,2010.206-209.
  • 10Li H Z,Ma B,Lee C H.A vector space modeling approach to spoken language identification.IEEE Transactions on Au-dio,Speech and Language Processing,2007,15(1):271-284.

共引文献247

同被引文献86

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部