期刊文献+

基于点密度与邻域信息的模糊C均值算法 被引量:1

A algorithm Based on Dot Density and Local Information Fuzzy C-Means
在线阅读 下载PDF
导出
摘要 Fuzzy C-Means(FCM)模糊c均值聚类算法是一个应用广泛、有效的无监督聚类算法。但传统FCM算法存在对所有样本等划分的缺点,导致聚类精度不高、鲁棒性不强。针对上述问题,从整体上引入点密度关系,从局部上引入点邻域信息,用以标记每个样本点,提出基于点密度和邻域信息的模糊c均值算法(DLFCM)。该算法能标记每个不同的样本,克服了FCM算法等划分的缺点,提高了算法的聚类精度和鲁棒性。人造数据集和UCI真实数据集实验验证了该算法的有效性。 Fuzzy c-means(FCM)cluster algorithm is a widely used and an effective unsupervised cluster algorithm.But the traditional FCM algorithm classifies all the samples equally,which leads to low clustering accuracy and low robustness.To deal with this problem,this paper introduces dot density relation from the overall and the local information from the local,to tag every sample point then based on the point density and local information a new FCM algorithm is proposed named DLFCM and proposes a fuzzy C-means algorithm based on dot density and local information(DLFCM).The algorithm can mark each different sample,overcome the disadvantages of FCM algorithm and improve the clustering accuracy and robustness Synthetic data and UCI data experiments have proved the effectiveness of the new algorithm.
作者 吴鹏 WU Peng(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and technology,Shanghai 200093,China)
出处 《软件导刊》 2018年第4期85-88,共4页 Software Guide
关键词 聚类算法 目标函数 邻域信息 鲁棒性 clustering algorithm objective function local Information robustness
  • 相关文献

参考文献6

二级参考文献35

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2薛忠,谢维信.模糊C均值聚类算法的一种初始化方法[J].系统工程与电子技术,1995,17(11):64-69. 被引量:12
  • 3刘弘,刘希玉.支持外观造型创新设计的进化计算方法[J].计算机辅助设计与图形学学报,2006,18(1):101-107. 被引量:39
  • 4何兴无.用户兴趣实例模型与K_means算法的改进[J].重庆师范大学学报(自然科学版),2006,23(2):38-41. 被引量:4
  • 5Bezdek J C.Patteru Recognition with Fuzzy Objective Function Algorithms[M].New York: Plenum Press, 1981
  • 6Bensaid A M,Hall L O.Partially Supervised Clustering for Image Segnentation[J].Pattern Recognition, 1996; 29 (5): 859~872
  • 7Pal N R,Bezdek J C.On Cluster Validity for the Fuzzy C-Means ModeI[J].IEEE Trans, Fuzzy Systems, 1995; 3 (4): 370~379
  • 8I Han, M Kamber. Data Mining:Concepts and Techniques [ M ]. Berlin: Morgan Kaufmann Publishers, 2000. 335-389.
  • 9Huang Joshua Zhexue, K Ng Michael, Rong Hongqiang and Li Zichcn. Automated Variable Weighting in k-Means Type Cluste- ring[J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2005,27(5 ) :657-668.
  • 10Michael Steinbach. A Comparison of Document Clustering tech- niques [ R ]. KDD 2000. Technical report of University of Minneso- ta, 2000.

共引文献212

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部