期刊文献+

Multi-sensor optimal weighted fusion incremental Kalman smoother 被引量:5

Multi-sensor optimal weighted fusion incremental Kalman smoother
在线阅读 下载PDF
导出
摘要 In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility. In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期262-268,共7页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(61104209 61503126)
关键词 weighted fusion incremental Kalman filtering poor observation condition Kalman smoother global optimality weighted fusion incremental Kalman filtering poor observation condition Kalman smoother global optimality
  • 相关文献

参考文献5

二级参考文献63

  • 1郭路,康鹏.基于信息融合和扩维Kalman滤波技术的系统误差估计算法研究[J].现代防御技术,2008,36(3):74-77. 被引量:7
  • 2郭路,康鹏.序贯滤波在双站无源定位中的应用研究[J].现代防御技术,2008,36(4):116-119. 被引量:1
  • 3Kalman R E. A new approach linear filtering and prediction problems [ J ]. Journal of Basic Engineering ( ASME), 1960, 82D :35-45.
  • 4Fujimoto O, Okita Y, Ozaki S. Nonlinearity compensation extended Kalman filter and its application to target motion[ J]. Oki Technical Review, 1997, 63(159) : 1-12.
  • 5Julier S J, Uhlmann J K. Unscented fihering and nonlinear estimation [ J ]. Proceedings of the IEEE, 2004, 92 ( 3 ) : 401-423.
  • 6Sage A P, Husa G W. Adaptive filtering with unknown prior statistics [ C ]. Joint American Control Conference. Boulder: Colorado, 1969: 769-774.
  • 7Pitt M, Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association, 1999, 94 (446) : 590-599.
  • 8秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2010:33-48.
  • 9Fujimoto O, Okita Y, Ozaki S. Nonlinearity compensation extended Kalman filter and its application to target motion [J]. Oki Technical Review, 1997,63(159) : 1-12.
  • 10Kubota T, Hashimoto T, Kawaguchi J, et al. Navigation guidance and control of asteroid sample return spacecraft : MUSES[C]//Proceedings 4th ESA International Conference on Spacecraft Guidance Navigation and Control Systems. Noordwijk: ESTEC, 2000 : 511-516.

共引文献39

同被引文献52

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部