期刊文献+

基于BP神经网络的电力通信用蓄电池健康状态评价模型 被引量:7

A Health Status Evaluation Model of Electric Power Communication Used Storage Battery Based on BP Neutral Network
在线阅读 下载PDF
导出
摘要 为确保通信电源系统的可靠性,及时掌握蓄电池的健康状态,采用BP神经网络模式识别方法,使用内阻、浮充电压、复升最高电压和温度这4个能最大程度影响蓄电池健康状态的性能参数构建蓄电池健康状态评价模型。仿真结果表明:经过学习训练的网络模型可以有效评估蓄电池的运行性能和健康状况,其正确判断率可达99.2%。 In order to guarantee the reliability of communication power supply system and grasp the health status of storage battery,BP neutral network pattern identification method is adopted,and the health status evaluation model of storage battery is built by using four performance parameters including internal resistance,floating charge voltage,maximum restoration voltage and temperature which can affect the health status of storage battery at maximum degree.Simulation results show that the neural network after training can effectively evaluate the operation performance and health status of storage battery whose correct judgment rate is up to 99.2%.
作者 胡秀园 陆贻名 莫飘 HU Xiuyuan;LU Yiming;MO Piao(Baise Power Supply Bureau,Guangxi Power Grid Co.,Ltd.,Guangxi Baise 533000,China)
出处 《广西电力》 2018年第2期44-47,58,共5页 Guangxi Electric Power
关键词 电力通信 蓄电池 BP神经网络 状态评价 electric power communication storage battery BP neutral network state evaluation
  • 相关文献

参考文献2

二级参考文献7

共引文献3

同被引文献41

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部