期刊文献+

基于CamShift改进算法的人脸跟踪识别系统 被引量:1

Face Tracking Recognition System Based on Improved CamShift Algorithm
在线阅读 下载PDF
导出
摘要 传统的人脸检测速度更多地关注检测精度,而跟踪算法多关注跟踪过程,本文综合这两种算法优点,提出改进算法实现人脸识别与跟踪。论文采用haar特征的Ada Boost算法检测面部,Eigenfaces算法实现人脸识别;视频序列中,识别的人脸作为跟踪算法的输入并实时更新;CamShift算法可以实时地跟踪人脸。实验结果显示,改进算法识别精度得到有效提高,且能达到实时跟踪的效果;人脸轮廓特征与肤色特征提高系统的鲁棒性。 The traditional face detection speed pays more attention to the detection accuracy,while the tracking algorithm pays more attention to the tracking process.This paper combines the advantages of these two algorithms and proposes an improved algorithm to achieve face recognition and tracking.The paper adopts AdaBoost algorithm of Hadar feature to detect face,and the Eigenfaces algorithm realizes face recognition.In video sequence,the identified face is used as input of tracking algorithm and updated in real time.CamShift algorithm can track face in real time.Experimental results show that the improved algorithm can effectively improve the recognition accuracy and achieve the effect of real-time tracking.The face contour feature and skin color feature can improve the robustness of the system.
作者 秦润泽 聂倩倩 Qin Runze;Nie Qianqian(Shanxi Agricultural University,Taigu Shanxi 030800,China)
机构地区 山西农业大学
出处 《山西电子技术》 2018年第3期50-53,共4页 Shanxi Electronic Technology
关键词 CAMSHIFT算法 HAAR EIGENFACES CamShift Haar Eigenfaces
  • 相关文献

参考文献6

二级参考文献61

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:256
  • 3GonzalezRC,WoodsRE.数字图像处理[M].阮秋琦,阮宇智,译.北京:电子工业出版社,2007:270-273.
  • 4宋新,沈振康,王平,王鲁平.Mean shift在目标跟踪中的应用[J].系统工程与电子技术,2007,29(9):1405-1409. 被引量:30
  • 5Brox T, Rousson M, Deriche R.Colour, texture, and motion in level set based segmentation and tracking[J].lmage and Vision Computing, 2010,28( 3 ) : 376-390.
  • 6Yang Changjiang,Duraiswami R,Dav s L.Efficient mean- shift tracking via a new similarity measure[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 : 176-183.
  • 7Chu Hongxia, Ye Shujiang, Guo Qingchang, et al.Objeet tracking algorithm based on CAMShift algorithm combi- nating with difference in frame[C]//IEEE International Conference on Automation and Logistics, 2007 : 51-55.
  • 8Dai Guojun, Zhang Yun.A novel auto-CAMShifl algorithm use in object tracking[C]//CCC2008,2008:369-373.
  • 9Elgammal A, Duraiswami R, Harwood D, et al.Back- ground and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proc of the IEEE,2002,90(7):1151-1163.
  • 10Scott D W.Multivariate density estimation[M].New York: Wiley-Interscience, 1992.

共引文献56

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部