期刊文献+

一类分数阶微分方程多点边值问题的多解性 被引量:9

Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation
在线阅读 下载PDF
导出
摘要 本文主要研究一类Riemann-Liouville分数阶微分方程多点边值问题:{D_(0+)~αu(t)+f(t,u(t),u′(t))=0,u(0)=u′(0)=u″(0)=…=u^(n-2)(0)=0,u′(1)=∑m-2i=1β_iu′(ξ_i),其中0≤t≤1,n-1<α≤n,n≥2,0<β_i<1,0<ξ_i<1,i=1,2,…,m-2。a_i>0,∑m-2i=1β_iξ_i^(α-2)<1。先利用Schauder不动点定理得到边值问题解的存在性,再由Leggett-Williams不动点定理证明边值问题至少存在3个正解的存在性,所得结论更为丰富,推广了已有文献的结果,最后举例子说明本文结论的正确性。 In this paper,a class of Riemann-Liouville fractional differential equation with multiple-points boundary conditions are studied:Dα0+u(t)+f(t,u(t),u′(t))=0,u(0)=u′(0)=u″(0)=…=u(n-2)(0)=0,u′(1)=∑m-2[]i=1βiu′(ξi),其中0≤t≤1,n-1<α≤n,n≥2,0<βi<1,0<ξi<1,i=1,2,…,m-2.a i>0,∑m-2[]i=1βiξα-2 i<1.The existence of solution for the boundary value problem is proved by using the Schauder fixed point theorem.At least three positive solutions of the above fractional differential equation are acquired by using the Leggett-Williams fixed point theorem.An example is given to illustrate the validity of the conclusion obtained in this paper.
作者 黄燕萍 韦煜明 HUANG Yanping;WEI Yuming(College of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 541006,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2018年第3期41-49,共9页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11361010) 广西自然科学基金(2014GXNSFAA118002)
关键词 分数阶微分方程 多点边值问题 SCHAUDER不动点定理 LEGGETT-WILLIAMS不动点定理 多解性 ractional differential equations multiple-point boundary value problem Schauder fixed point theorem Leggett-Williams fixed point theorem multiple solutions
  • 相关文献

参考文献8

二级参考文献55

  • 1钟文勇.分数阶微分方程多点边值问题的正解[J].吉首大学学报(自然科学版),2010,31(1):9-12. 被引量:9
  • 2LiHongyu,SunJingxian.POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS[J].Annals of Differential Equations,2005,21(2):153-160. 被引量:19
  • 3Li C E, Luo X N, Zhou Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Comput Math, Appl, 2010, 59: 1363-1375.
  • 4PODLUBNY I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York, London, Toronto: Academic Press, 1999.
  • 5BAI Z B, LV Haishen. Positive solutions for boundary value problem of nonlinear fractional differ- ential equation[J]. J Math Anal Appl, 2005, 311: 495-505.
  • 6BAI Z B. On positive solutions of a nonlocal fractional boundary value problem[J]. Nonlinear Anal, 2010, 72: 916-924.
  • 7Zhong W Y, Lin Wei. Nonlocal and multiple-point boundary value problem for fractional differential equations[J]. Comput Math Appl, 2010, 59: 1345-1351.
  • 8Ji Yude,Guo Yanping.The existence countably of many positive solutions for some nonlinear fractional order mpoint boundary value problems[J].Journal of Computational and Applied Mathematics,2009,232:187-200.
  • 9Pang Changei,Dong Wei,Wei Zhongli.Green function and positive solutions of nth order m-point boundary value problem[J].Applied Mathematics & Computatior,2006,182:1231-1239.
  • 10Wei Yuming,Patricia J Y Wong,Ge W G.The existence of multiple positive solutions to boundary value problems of nonlinear delay differential equations with countably many sigularities on infinite interval[J].Journal of Computatioral and Applied Mathematics,2010,233:2189-2199.

共引文献18

同被引文献70

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部