期刊文献+

基于深度学习的台标检测在网络视频审核中的应用 被引量:1

Application of the TV logo detection based on deep learning in network public opinion supervision
在线阅读 下载PDF
导出
摘要 电视台标检测是网络视频审核的常用方法,但传统台标检测方法检测成功率较低,文章将基于深度学习的SSD算法应用于台标检测。首先选取79类237个常见台标视频作为台标基准库,以每秒一帧的速率对台标基准库进行处理,共127 980张图像帧,其中95 586张用于台标检测模型训练,32 394张用于模型测试,算法每训练2 000次进行模型迭代,共训练90 000次并选取最优模型。经过大量的台标样本实验测试,准确率可达98.2%,优于权威文献中经典方法。表明该方法具有较高准确率和高扩充性。 TV logo detection is a common method of network video audit,but traditional logo detection exists low accuracy rate.In this paper,we apply SSD algorithm based on deep learning to logo detection.Firstly,it selects 79 kinds of 237 common logo video as a benchmark database,the logo is processed to benchmark rate per frame,a total of 127 980 frames,95 586 of them are used to train the logo detection model,32 394 sheets for model testing.The algorithm is iterated for each training 2 000 times,training 90 000 times and selecting the optimal model.In many experiments of sample test station,the accuracy is up to 98.2%,it is superior to the classical method in the authoritative literature.It shows that the method in this paper has high accuracy and high scalability.
作者 刘琨 Liu Kun(School of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)
出处 《无线互联科技》 2018年第15期36-38,共3页 Wireless Internet Technology
关键词 网络视频审核 台标检测 深度学习 SSD 高扩充性 network video audit TV logo detection deep learning SSD high extension
  • 相关文献

参考文献4

二级参考文献33

  • 1章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 2Yeo B L, et al. Retrieving and Visualizing Video. ACM Communication, 1997, 40(12): 47-52.
  • 3Chang S F, et al. VideoQ: An Automated Content Based Video Search System Using Visual Cues. In: Proc of ACM Multimedia.Los Angeles, USA, 1997, 313-324.
  • 4Wactlar H D, et al. Intelligent Access to Digital Video: Informedia Project. IEEE Computer, 1999, 29(6) : 46-52.
  • 5Shermann S M, et al. Accommodation Hybrid Retrieval in a Comprehensive Video Database Management System. IEEE Trans on Multimedia, 2002, 4(2) : 146-159.
  • 6Jing H, Zhang H J, etal. Video Segmentation with the Support of Audio Segmentation and Classifieation. In: Proe of the IEEE International Conferenee on Multimedia and Expo. New York,USA, 2000, Ⅲ : 1507-1510.
  • 7Jain A K, et al. Shape-Based Retrieval: A Case Study with Trademark Image Databases. Pattern Recognition, 1998, 31(9):1360-1390.
  • 8Miyahara M, et al. Mathematical Transform of (R,G,B) Color Data to Munsell (H,V,C) Color Data. In: Proc of the SPIE Conference on Visual Communications and Image Processing.San Jose, USA, 1988, 650-657.
  • 9Gargi U, etal. Evaluation of Video Sequence Indexing and Hierarchical Video Indexing. In: Proc of the SPIE Conference on Storage and Retrival in Image and Video Databased. San Jose, USA, 1995, 1522-1530.
  • 10VapnikV 著张学工 译.统计学习的本质[M].北京:清华大学出版社,2000..

共引文献21

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部