期刊文献+

基于HOG特征结合Adaboost算法的行人检测 被引量:11

Pedestrian Detection Based on HOG Feature Combined with Adaboost Algorithm
在线阅读 下载PDF
导出
摘要 近些年来,行人检测一直是计算机视觉领域内的一个研究热点。但在实际应用中,由于光照变化、复杂背景、行人遮挡等问题的存在,目前仍然缺乏一个鲁棒健壮的行人检测系统,可以满足实际应用中的需要。本文首先介绍了HOG特征和Adaboost算法,然后提出了一种基于HOG特征结合Adaboost算法的行人检测算法。最后在行人检测数据集上的实验结果表明本文提出的算法的检测准确率高达95%,并且在分辨率为640*480的视频上可以基本满足实时性的要求。 Pedestrian detection is a hot topic in the field of computer vision in recent years.But in practical applications,due to the illumination change,complex background,pedestrian occlusion and other problems,there is still a robust and robust pedestrian detection system,which can meet the needs of practical application.This paper first introduces the HOG features and Adaboost algorithm,and then proposes a pedestrian detection algorithm based on HOG features combined with Adaboost algorithm.Finally,the experimental results on pedestrian detection datasets show that the proposed algorithm achieves a detection accuracy of up to 95%,and can meet the real-time requirements in the video with resolution of 640*480.
作者 樊春年 杜卫平 刘艳荣 FAN Chun-nian;DU Wei-ping;LIU Yan-rong(Xinjiang Institute of Light Industry Technology,Urumqi 830021 China)
出处 《自动化技术与应用》 2018年第7期89-91,共3页 Techniques of Automation and Applications
关键词 HOG特征 ADABOOST算法 行人检测 HOG feature Adaboost algorithm pedestrian detection
  • 相关文献

参考文献1

二级参考文献207

  • 1王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 2Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 3Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 4Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 5Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 6Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 7Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 8Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.
  • 9Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127.
  • 10Aggarwal J K, Ryoo M S. Human activity analysis: A review. ACM Computing Surveys, 2011, 43(3): 16.

共引文献403

同被引文献74

引证文献11

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部