期刊文献+

WSN中利用蚁群路径优化的时隙选择重排算法 被引量:2

Time slot selection and rearrangement algorithm using ant colony optimization in WSN
在线阅读 下载PDF
导出
摘要 针对无线传感器网络(WSN)汇聚传输中的数据传输时间和功耗问题,提出了考虑时间同步和唤醒延迟的汇聚传输时隙选择重排算法。将时分多址接入(TDMA)用作介质访问协议,并允许每个节点在传输时隙期间可以发送或接收数据;设计新的WSN数据收集树模型,将传感器节点生成的数据通过无线链路形成的多跳网络发送到汇聚节点,在数据收集树的每条链路上分析时隙顺序,优化时隙选择,并基于蚁群算法优化路径选择,减少传输能量消耗和均衡簇头能量。实验结果表明,提出的算法可以实现显著的数据传输性能提高和功耗节约。 In order to solve the problem of data transmission time and power consumption in wireless sensor networks(WSN),this paper proposed a new algorithm of time slot synchronization considering time synchronization and wake delay.The algorithm used the time division multiple access(TDMA)as a medium access protocol to allow each node send or receive data in the transmission time slot,designed the new WSN data collection tree model to transmit data generated by sensor nodes through multi hop network of the wireless link,analysis slot order in each link of the tree of collecting data for the optimization of slot selection,and optimized the path selection to reduce the transmission energy consumption and balanced cluster head energy based on ant colony algorithm.The experimental results show that the proposed algorithm can improve the performance of data transmission and save power.
作者 余光华 余成 Yu Guanghua;Yu Cheng(Network&Information Technology Center,South of the Five Ridges Teachers College,Zhanjiang Guangdong 524000,China;School of Computer Science&Engineering,South China University of Technology,Guangzhou 510000,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第10期3069-3074,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61301300) 广东省自然科学基金资助项目(2016A030313455)
关键词 无线传感器网络 汇聚传输 时分多址接入 时隙选择重排 蚁群算法 wireless sensor network convergence transmission time division multiple access time slot synchronization algorithm ant colony optimization
  • 相关文献

参考文献10

二级参考文献113

  • 1Rama K. YEDAVALLI,Rohit K. BELAPURKAR.Application of wireless sensor networks to aircraft control and health management systems[J].控制理论与应用(英文版),2011,9(1):28-33. 被引量:16
  • 2孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1055. 被引量:79
  • 3倪菲,付庄,曹其新,赵言正.肖像绘制机器人的漫画处理方法[J].上海交通大学学报,2007,41(8):1276-1281. 被引量:2
  • 4LECOUTRE C. Constraint Networks: Techniques and Algorithms[M]. London: John Wiley & Sons, Inc, 2009.
  • 5GOLOMB S W, BAUMERT L D. Backtrack programming[J]. Journal oftheACM, 1965,(12): 51-524.
  • 6DORIGO M. Optimization, Learning and Natural Algorithms[D]. Politecnico di Milano, 1992.
  • 7SOLNON C. Ants can solve constraint satisfaction problems[J]. IEEE Transactions on Evolutionary Computation, 2002,6(4):347-357.
  • 8CORMEN T H, et al. Introduction to Algorithms[M]. Cambridge MIT Press, 2001.840-890.
  • 9EIBEN A E, MICHALEWICZ Z, SCHOENAUER M, et al. Parameter Control in Evolutionary Algorithms[M]. Springer Berlin Heidelberg, 2007.
  • 10SMITH B, DYER M. Locating the phase transition in binary con- straint satisfaction problems[J]. Artificial Intelligence, 1996, 81(1): 155-181.

共引文献46

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部