摘要
研究了分数阶Genesio-Tesi混沌系统的适应转移函数滑模同步问题,通过减少控制输入,将三阶分数阶Genesio-Tesi混沌系统的同步化问题转化为一个特殊的二阶系统,基于Lyapunov稳定性理论及分数阶微积分,给出了主从系统取得混沌同步的充分条件。
The problem of adaptive transfer function sliding mode synchronization of the fractional-order Genesio-Tesi system is studied in the paper.The three-order fractional-order Genesio-Tesi system is transferred into the control problem of the special two-order system by reducing the number of active inputs.Based on the Lyapunov stability theory and the fractional-order calculus,the sufficient conditions of the sliding mode synchronization are obtained for the master-slave system of the fractional-order Genesio-Tesi system.
作者
毛北行
Mao Beixing(College of Science,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2018年第5期586-590,共5页
Journal of Nanjing University of Science and Technology
基金
国家自然科学青年基金(NSFC11501525)