期刊文献+

结合反卷积的CT图像超分辨重建网络 被引量:9

Super-Resolution Reconstruction of CT Images Using Neural Network Combined with Deconvolution
在线阅读 下载PDF
导出
摘要 医学图像的质量对于患者疾病的诊断、治疗乃至科学研究起着重要的作用.然而,受医疗设备和放射剂量等因素的影响,医学CT图像的分辨率普遍较低.为了实现医学CT图像超分辨重建,提出一种结合反卷积的神经网络算法,通过引入反卷积操作,有效地建立了低/高分辨率图像之间端到端的映射.首先选取肺部、脑部、心脏和脊椎等部位的1 500幅CT图像作为训练数据,将训练数据下采样后输入网络模型;然后建立正反卷积网络模型学习图像特征,网络模型用caffe框架实现,激活函数使用PReLU;最后基于学习到的这些特征重建出高分辨率图像,采用平均方法重建图像.实验结果表明,文中算法能够更好地重建出图像的轮廓和边缘纹理;与已有算法相比,所构建的4层网络结构在重建结果的峰值信噪比、结构相似性、信息熵及重建速度等性能指标上均取得了更好的效果. The quality of medical images plays an important role in the diagnosis,treatment and even scientific research of patients’diseases.However,due to the influence of medical equipment and radiation dose,the resolution of medical CT images is generally low.Therefore,this paper proposes a neural network algorithm combined with deconvolution for achieving super-resolution reconstruction of medical CT images.The proposed algorithm adds the operation of deconvolution,which effectively establishes the end-to-end mapping between low and high-resolution images.Firstly,1 500 CT images of lung,brain,heart and spine are selected as training data,and they are down-sampled and then input into network model.Secondly,through the establishment of the convolution and deconvolution network model to learn image features,the network model is implemented using the caffe framework,and the activation function uses PReLU.Finally,the algorithm reconstructs high-resolution images using these features,where the image of reconstruction are averaged.The experimental results show that the proposed algorithm can reconstruct the contour and edge texture of the image better.Compared with the traditional super-resolution algorithm,the constructed four-layer network in this paper achieves better results in peak signal-to-noise ratio(PSNR),structural similarity(SSIM),information entropy(IE)and reconstruction speed.
作者 徐军 刘慧 郭强 张彩明 Xu Jun;Liu Hui;Guo Qiang;Zhang Caiming(School of Computer Science and Technology,Shandong University of Finance and Economics,Ji’nan 250014;Digital Media Technology Key Laboratory of Shandong Province,Ji’nan 250014;School of Computer Science and Technology,Shandong University,Ji’nan 250100;Shandong Co-Innovation Center of Future Intelligent Computing,Yantai 264025)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第11期2084-2092,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金重点项目浙江联合基金(U1609218) 国家自然科学基金(61572286 61472220) 山东省重点研发计划(2017CXGC1504) 山东省自然科学基金(ZR2017JL029) 山东省高等学校优势学科人才团队培育计划
关键词 CT图像 超分辨重建 卷积神经网络 反卷积 PReLU CT image super-resolution reconstruction convolution neural network deconvolution PReLU
  • 相关文献

参考文献3

二级参考文献30

  • 1吴伟仁,闫磊,田金文.基于小波变换与Bézier曲面插值相结合的图像插值方法[J].哈尔滨工业大学学报,2004,36(11):1468-1470. 被引量:3
  • 2胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:101
  • 3韩萍,苏志勋,刘秀平.带参数Coons插值曲面的图像插值方法[J].计算机辅助设计与图形学学报,2005,17(5):976-980. 被引量:6
  • 4Irani M, Peleg S. Improving resolution by image registration[J].Graphical Models and Image Processing, 1991, 53(3): 231-239.
  • 5Elad M, Feuer A. Super-resolution reconstruction of image sequences[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1999, 21(9): 817-834.
  • 6Farsiu S, Robinson M D, Elad M, et al. Fast and robust multiframesuper resolution[J]. IEEE Transactions on Image Processing,2004, 13(10): 1327-1344.
  • 7Duan Q, Wang L, Twizell E H. A new bivariate rational interpolationbased on function values[J]. Information Sciences,2004, 166(1-4): 181-191.
  • 8Keys R. Cubic convolution interpolation for digital imageprocessing[J]. IEEE Transactions on Acoustics, Speech andSignal Processing, 1981, 29(6): 1153-1160.
  • 9Li X, Orchard M T. New edge-directed interpolation[J]. IEEETransactions on Image Processing, 2001, 10(10): 1521-1527.
  • 10Zhang X J, Wu X L. Image interpolation by adaptive 2D autoregressivemodeling and soft-decision estimation[J]. IEEETransactions on Image Processing, 2008, 17(6): 887-896.

共引文献122

同被引文献52

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部